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Executive Summary 
Expanding Electric Vehicle (EV) charging functionality to include Vehicle-to-Everything (V2X) requires 

improvements to existing Energy Management Systems (EMSs). These systems should account for the 

development of advanced optimization algorithms that are scalable for mass deployment and capable 

of co-optimizing across multiple objectives including grid needs, user needs, and other connected 

resources like microgrids and distributed energy resources while factoring in the constraints from the 

vehicle and the charging infrastructure. Furthermore, the so-formulated EMSs should internalize the 

impacts on the life of the battery and power electronics to understand its effect on the decision-making 

process for V2X. Additionally, these advanced EMSs should be capable of combining Artificial 

Intelligence (AI) forecast modules with optimization modules and offering optimal management and 

flexibility services at different time horizons (e.g., real-time, 5 min, 15 min, 24h) to serve different grid 

needs. 

Deliverable D4.3 “Advanced flexibility management system description and functionalities” is among 

the deliverables (i.e., D4.1, D4.2, D4.4, and D4.5) of Work Package 4 (WP4) describing the EMS 

improvements implemented to enable V2X functionality and enhance energy system performance 

within the FLOW project. 

Based on this description, task T4.3 focuses on designing advanced smart charging solutions to 

successfully integrate EVs into electric power systems by combining AI modules developed in task T4.2 

and leveraging the requirements and motivations identified in WP1. Task T4.3 contributes to the FLOW 

Objectives “Define, improve and validate a portfolio of EV smart charging configurations, technologies, 

and strategies for a range of applications and use cases.” This contribution is achieved through two 

main case studies: one involving a private parking lot and another involving two medium and medium 

and large-sized public parking lots. Hence, the main purpose of this document is to describe the 

research effort and results obtained within task T4.3 between months M4-M18 of the project. The 

main contributions of this deliverable can be summarized as follows: 

• Presenting concise summaries of key concepts that serve as the groundwork for the content 

in deliverable D4.3 and the activities conducted within the task T4.3. These explanations aim 

to underscore the paramount importance of V2X technology, illuminate the intricacies of EMS, 

and outline the cutting-edge areas of focus in EMS research. Among these forefront 

considerations, EMS approaches that account for uncertainties, delve into battery degradation 

models, and tackle the complexities of multi-criteria optimization challenges are also 

examined. These insights collectively provide a comprehensive foundation, paving the way for 

the detailed investigations that ensure power system stability, and effectively orchestrating 

EV fleet participation in grid operations. 

• Quantifying the economic benefits associated with the provision of ancillary services to the 

grid. The analysis is based on a recent Vehicle-to-Grid (V2G) energy management framework 

introduced by RSE (Vignali, Falsone, Ruiz, & Gruosso, 2022), while its methodology can be 

applied to alternative V2G frameworks. The analysis defines necessary and sufficient 

conditions for profitability and illustrates through numerical simulations using MATLAB. 

• Developing of a highly flexible multi-objective optimization algorithm and establishing a 

foundational EMS for the scheduling of EV charging. This challenge is addressed through a 

Mixed-Integer Linear Program (MILP) formulation inspired by previous work of the TUD (Mouli, 
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Kefayati, Baldick, & Bauer, 2019). Numerical simulations in JuMP1 (Lubin, et al., 2023) using 

Gurobi2 as the solver vividly showcases the adaptability of the algorithm while highlighting the 

pivotal role of the multi-objective approach.  

• Characterizing the strengths and weaknesses of the most referenced EMSs for EV charging, 

with a particular focus on areas for potential improvement and strategies to encourage the 

adoption of battery degradation models in charging methods. This effort aims to emphasize 

the importance of considering degradation as a crucial element of charge management.  

The remainder of the document is structured as follows. Section 1 presents a concise summary of key 

concepts that serve as the groundwork for the content in deliverable D4.3 and the activities conducted 

within the task T4.3. Section 2 quantifies the economic benefits associated with the provision of 

ancillary services to the grid. Section 3 presents a highly adaptable multi-objective optimization 

algorithm and a foundational EMS for EV charging scheduling. Section 4 discusses the strengths and 

weaknesses of EVs, emphasizing the potential of integrating battery degradation models and their role 

in reducing the total cost of charging and mitigating environmental impact by extending the EV's 

battery life. Finally, conclusions are drawn in Section 5. 

  

 
1 https://jump.dev/JuMP.jl/stable/  
2 https://www.gurobi.com/  

https://jump.dev/JuMP.jl/stable/
https://www.gurobi.com/
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1. EMS to enable V2X functionality 
In the upcoming sections, we will provide concise summaries of pivotal concepts that lay the 

foundation for the contents of this deliverable and the work conducted within task T4.3. These 

elucidations are designed to highlight the paramount significance of Vehicle-To-Everything (V2X) 

technology, shed light on the complexities of Energy Management Systems (EMSs), and outline the 

cutting-edge focal points within the realm of EMS exploration. Among the forefront considerations, 

we will delve into the realm of EMS that considers uncertainties, explore battery degradation models, 

and navigate the complexities of multi-criteria optimization challenges. These insights will collectively 

offer a comprehensive overview, setting the stage for the detailed explorations that follow. 

1.1. The need for an EMS  

In the realm of advancing environmental concerns and clean energy priorities, Electric Vehicles (EVs) 

have garnered increasing attention from governments, industries, and consumers alike. Recognized as 

a potent strategy to diminish oil dependency, curb gas emissions, and amplify energy conversion 

efficiency, EVs have sparked a transformative revolution in the automotive market (Chan, 2007), 

(Williams, et al., 2012). Previous years have seen concentrated efforts on refining EV components, 

ranging from electric machines and drive systems to batteries, fuel cells, and onboard renewable 

energy sources (Sovacool & Hirsh, Beyond batteries: an examination of the benefits and barriers to 

plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition, 2009). Yet, with the 

emergence of the smart grid paradigm, EVs are primed to assume a fresh role enabling energy 

exchange with the power grid. The surge in electric mobility has witnessed a remarkable upswing in 

the global electric car fleet, surpassing 7.2 million units in 2019 with a 40% annual rise. This upward 

trajectory persisted into 2020, culminating in over 10 million EVs worldwide (Association, 2023). 

Despite to the promising trajectory of EV adoption, the cumulative energy demands posed by a 

substantial EV fleet could potentially strain energy supply systems. The resultant challenges span 

voltage regulation, peak-load demands, frequency fluctuations, and harmonic contamination. Herein, 

the implementation of a smart grid system assumes paramount significance, handling the integration 

of EVs and fleet planning to minimize power system stress. Smart EV charging systems can optimize 

electricity demand patterns, thus mitigating power system strain. The concept of V2G technology gains 

importance, where EV batteries function as energy storage units capable of contributing power back 

to the grid during peak-load demands (Sovacool, Axsen, & Kempton, Tempering the Promise of Electric 

Mobility? A Sociotechnical Review and Research Agenda for Vehicle-Grid Integration (VGI) and Vehicle-

to-Grid (V2G), 2017). 

These grids connected EVs, denoted as Gridable EVs (GEVs), possess the capability not only to draw 

energy from the power grid through plug-in functionality but also to feed energy back into the grid 

using bidirectional chargers. This is facilitated by the presence of Direct Current (DC) link capacitors 

within the bidirectional chargers, inherently equipped to supply reactive power support to the power 

grid. In contrast to traditional fossil fuel power plants, which exhibit overall efficiency of approximately 

30%, renewable energy sources boast remarkable efficiency levels of about 70% from generation to 

grid connection (Pecas Lopes, Joel Soares, & Rocha Almeida, 2010). 
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Capitalizing on the charging and discharging capabilities of GEVs, coupled with the energy-efficient 

mandates of the power grid, the concepts of Vehicle-to-Home (V2H), Vehicle-to-Vehicle (V2V), Vehicle-

to-Grid (V2G), and more in general V2X, have gained increasing attention in recent times. These 

concepts empower GEVs to transcend their roles as mere transportation tools, instead functioning as 

manageable loads and distributed sources for the power grid. Consequently, GEVs can act positive 

influence across home, community, and distribution grids during their charging and discharging cycles. 

Concurrently, the associated bidirectional chargers can inject reactive power into the grid via 

capacitors, significantly contributing to grid stability (Liu C. , Chau, Wu, & Gao, 2018), (Prencipe, van 

Essen, Caggiani, Ottomanelli, & Homem de Almeida Correia, 2022). 

Hence, considering the manifold advantages and challenges connected with the expanding EV 

landscape, the need for an advanced EMS arises. An EMS serves as the system that effectively 

harmonizes the interplay of EVs, smart grids, and energy demand patterns. By optimizing the utilization 

of available energy resources, minimizing system stress, and strategically engaging with grid dynamics, 

an EMS emerges as the key to unlocking the full potential of this evolving energy ecosystem. 

1.2. Essential EMS concepts  

This section introduces the intricacies of EMS as it pertains to Deliverable D4.3. It provides insights on 

the challenges brought about by uncertainty in the context of EV fleet aggregation for grid services. 

We explore the source of uncertainties in EMS related to variables such as individual vehicle arrival 

and departure times, as well as their initial State of Charge (SoC). Additionally, we introduce the vital 

concepts of single and multi-objective optimization and discuss their significance in the domain of EV 

charging scheduling. We also delve into the limitations of single-objective optimization, which 

primarily revolves around cost minimization, and stress the importance of adopting multi-objective 

approaches to address conflicting objectives involving various stakeholders. Finally, considering the 

extensive discussion on battery degradation's impact on EV charging optimization, we will also touch 

upon how this factor introduces an additional layer of complexity into EMS strategies, further 

highlighting the need for advanced optimization approaches. 

1.2.1. EMS under uncertainty  

In the context of designing aggregation strategies to address EV fleet requirements, a central challenge 

arises from managing the inherent uncertainty associated with fleet behavior. This uncertainty 

encompasses several critical parameters, including the arrival and departure times of individual 

vehicles, as well as their initial SoC. These parameters are essential for the aggregator to effectively 

schedule power flows in line with fleet dynamics. Furthermore, when engaging in wholesale markets, 

the aggregator must navigate the unpredictable outcomes of ancillary services, adding another layer 

of uncertainty to the equation (Sriyakul & Jermsittiparsert, 2020). 

As electrified transportation evolves, diverse approaches for aggregating EV fleets through direct 

control mechanisms have been proposed. These approaches vary based on the optimization 

objectives, operational timelines, and strategies for addressing uncertainty. Existing methodologies 

include deterministic models for day-ahead energy optimization, stochastic programming, scenario 

generation, and robust optimization (Liu & Etemadi, 2018), (DeForest, MacDonald, & Black, 2018), 

(Alipour, Mohammad-Ivatloo, Moradi-Dalvand, & Zare, 2017). 
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Stochastic optimization techniques aim to maximize the expected profit of the aggregator while 

imposing constraints to limit the probability of noncompliance. These methods consider uncertainties 

in market prices, vehicle availability, reserves activation, energy prices, and renewable source 

generation. They encompass a broad spectrum of scenarios, ranging from power system constraints 

to participation in ancillary service markets (Sun, Neumann, & Harrison, 2020), (Shi, Li, Zhang, & Lee, 

2020), (Porras, Fernández-Blanco, Morales, & Pineda, 2020). 

Robust optimization, on the other hand, tackles uncertainty by formulating the worst-case scenario. 

This approach focuses on ensuring feasible solutions that withstand deviations caused by uncertainty. 

While robust formulations often concentrate on day-ahead planning of charging and discharging 

profiles, they sometimes exclude the integration of ancillary services in the aggregator's operations. 

While both stochastic and robust optimization techniques offer valuable insights, they come with their 

challenges. Stochastic optimization necessitates detailed probability distribution information for 

uncertain variables and can lead to computationally intensive solutions. Moreover, it might not 

guarantee compliance with Transmission System Operator (TSO) requirements across all possible 

scenarios. Robust formulations, on the other hand, often prioritize charging/discharging profile 

planning without incorporating ancillary services (Vignali, Falsone, Ruiz, & Gruosso, 2022). Given these 

intricate dynamics, the presence of uncertainty underscores the imperative for a sophisticated EMS. 

An EMS plays a pivotal role in accounting for uncertainty, optimizing resource utilization, ensuring 

power system stability, and effectively orchestrating EV fleet participation in grid operations. By 

embracing uncertainty and incorporating strategies to mitigate its impact, an EMS enhances the agility 

and resilience of the entire energy ecosystem, paving the way for a more sustainable and reliable 

electric mobility landscape. 

1.2.2. Single and multi-objective optimization approaches 

In the process of formulating an optimization problem to address EV fleet requirements, an essential 

consideration is defining the problem itself. This involves expressing the primary objectives of an 

optimization algorithm through one or more objective functions. In the context of single-objective 

optimization, there is only one function at play. While this function may encompass multiple 

operational objectives, it does not take into account their interrelationships. 

In numerous studies, a singular objective often takes center stage, typically involving cost minimization 

or reward maximization. While a cost function may encompass various components (e.g., electricity 

cost, battery degradation cost, etc.), this approach has its limitations. Certain objectives may clash with 

others, making it challenging to identify trade-offs using solely a cost-based formulation. Furthermore, 

this approach tends to focus on the perspective of a single actor (be it the EV user, TSO, DSO, etc.), 

without delving into the potential conflicts of interest among these stakeholders. 

In the case of multi-objective optimization, two or more conflicting objectives are defined. There are 

multiple possible classifications for these problems. One of the most popular ones is based on the 

decision-making process (Cohon & Marks, 1975), (Chiandussi, Codegone, Ferrero, & Varesio, 2012): 

• A priori methods where preferences information is available before the solution process; 

• A posteriori methods where first possible (Pareto-optimal) solutions are identified, and then 

the decision-making process chooses one of the solutions; 
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• Progressive methods where the generated solutions are iteratively refined based on the 

decision-maker’s preferences. 

Although limited in number, multi-objective EV charging scheduling approaches can also be found in 

the literature.  Both a prioiri and a posterioiri methods have been investigated. In the former case, the 

multi-objective problem is always transformed into one or more single-objective formulations. The 

weighted sum method (e.g., (Garcia-Villalobos J. , Zamora, Knezovic, & Marinelli, 2016), (Singh, Das, 

Wen, Singh, & Thakur, 2023)), (Kapoor, Gangwar, Sharma, & Mohapatra, 2020) and hierarchical 

optimization (e.g., (Kaur, Singh, & Kumar, 2019), (Chung, Li, Yuen, Wen, & Crespi, 2019), (Jiang, Zhang, 

Li, Zhang, & Huang, 2017)) are two commonly used approaches, but these only provide one Pareto-

optimal solution and do not represent the whole front. 

Posterioiri methods include mathematical programming, metaheuristic algorithms and machine 

learning. Their common point is that they generate multiple nondominated solutions, which represent 

part of or the whole Pareto-front. With mathematical programming, different scalarizations are 

formed and then solved using single-objective optimization. Metaheuristic algorithms approximate the 

front in a single run, but the optimality cannot be guaranteed (Ruzika & Wiecek, 2005), (Coello Coello, 

Lamont, & Van Veldhuizen, 2007). The number of papers dealing with EV scheduling based on a 

posteriori methods is relatively small, but metaheuristic approaches seem more prevalent (Mishra, 

Mondal, & Mondal, 2022), (Einaddin & Yazdankhah, 2020), (Ahmadi, Arias, Hoogsteen, & Hurink, 

2022), (Kharra, Tiwari, Singh, & Rawat, 2023), (Singh & Tiwari, Multi-Objective Optimal Scheduling of 

Electric Vehicles in Distribution System, 2018). Among the scalarization methods, the ε-constraint or 

augmented ε-constraint methods are the most often used (Maigha & Crow, 2018), (Zakariazadeh, 

Jadid, & Siano, 2014). While undoubtedly, cost will remain the most important aspect for the operator 

of the EMS, a holistic view of the possible objectives and their corresponding trade-offs is essential for 

the harmonic co-operation between the grid and EMS and for the provision of ancillary services. 

Conflicting objectives can only be handled effectively with a proper representation of the Pareto front. 

Thus, an a posterioiri multi-objective-based optimization is crucial for advanced EMSs. 

1.2.3. Battery degradation's impact on EMS 

Incorporating considerations related to battery degradation into EMS strategies presents a significant 

opportunity. Robust evidence suggests that battery usage patterns have a substantial impact on 

battery degradation, influencing factors such as reduced driving range and the total cost of ownership 

of EVs (Baure & Dubarry, 2020), (Jafari, Gauchia, Zhao, Zhang, & Gauchia, 2018). The limited adoption 

of battery degradation in charge optimization strategies is not indicative of its importance but is 

primarily due to its inherent complexity. Battery degradation is influenced by a multitude of factors, 

including temperature, Depth of Discharge (DoD), SoC, Charge-discharge rate (C-rate), ampere-hour 

throughput, cycle number, and storage duration, exhibiting nonlinear relationships among these 

variables. 

While including battery degradation in the optimization of charging vehicles is not commonplace, it is 

a common practice in the field of stationary Battery Energy Storage Systems (BESS). Ignoring battery 

degradation in BESS optimization management controls can result in a lack of assurance for battery 

amortization (Xu, Oudalov, Ulbig, Andersson, & Kirschen, 2018), (García-Miguel, Alonso-Martínez, 

Arnaltes Gómez, García Plaza, & Asensio, 2022), (Rosewater, Copp, Nguyen, Byrne, & Santoso, 2019). 

The simplest approach to include degradation in optimization considers that battery lifetime is 
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primarily influenced by the number of cycles or kWh throughput (Martins, Hesse, Jungbauer, 

Vorbuchner, & Musilek, 2018), (Saez-de-Ibarra, Martinez-Laserna, Stroe, Swierczynski, & Rodriguez, 

2016). To enhance the accuracy of this degradation estimation, other factors such as SoC and C-rate 

can also be considered (Bai, Wang, & He, 2022), (Maheshwari, Paterakis, Santarelli, & Gibescu, 2020). 

While using degradation models offers benefits, the inherent nonlinearity of these models and the 

challenges associated with precisely incorporating factors like DoD contribute to the complexity of 

integrating them into an optimization problem (Zhao & Li, 2023). 

In the realm of EVs, battery degradation consideration has traditionally centered on the driving phase, 

as demonstrated in (Wang, Jiao, & Sun, Energy Management Strategy in Consideration of Battery 

Health for PHEV via Stochastic control and Particle Swarm Optimization Algorithm, 2017). However, 

the concept of bidirectional power flow, such V2G, has gained significant attention as a potential 

source of multiple revenue streams and an opportunity to support grid operations (e.g., balancing, 

congestion). A substantial portion of optimization studies now focuses on assessing the degradation 

effects of discharging the battery when the vehicle is connected to a bidirectional charger, as 

exemplified by (Leippi, Fleschutz, & Murphy, 2022), (Thomposon, 2018). The problem formulation, 

akin to BESS optimization, incorporates additional features specific to charger technology, such as 

arrival time, departure time, and initial and final SoC. Some degradation factors, including cycles or 

kWh throughput (Singh & Tiwari, Cost Benefit Analysis for V2G Implementation of Electric Vehicles in 

Distribution System, 2020), SoC (Ahmadian, et al., 2018), and C-rate (Recalde Melo, Trippe, Gooi, & 

Massier, 2018), have been integrated into V2G management strategies. Moreover, power, SoC, and a 

simplified calculation of DoD were incorporated into models proposed by (Mal, Chattopadhyay, & 

Yang, 2013). More comprehensive degradation modelling has been explored using two-step 

optimization (Farzin, Fotuhi-Firuzabad, & Moeini-Aghtaie, 2016) or multi-objective models (Chung, 

Jangra, Lai, & Lin, 2020). Additionally, some studies have gone beyond merely considering electricity 

prices (Das, et al., 2020) and have included considerations for theoretical CO2 emissions during the 

charging process. 

Despite extensive research on battery degradation in the context of V2G applications, unidirectional 

chargers, which are currently the predominant charger type, have received limited attention. Much of 

the literature often explores battery considerations across various charging methods (Bandara, Viera, 

& González, 2022). However, concerning optimal economic management, the integration of 

degradation stress factors into the optimization model remains relatively limited. For instance, (Wei, 

Li, & Cai, 2018) optimizes EV charging while incorporating degradation as a power function.  

The complexity of battery models and the challenges associated with their integration into EV charge 

optimization models, coupled with the diversity of battery technologies across EVs, pose significant 

challenges for Charger Station Operators (CSOs). Furthermore, commonly used communication 

protocols between vehicles and chargers, such as ISO 151183 or IEC 618514, lack sufficient information 

to incorporate degradation effects into optimization models, resulting in both theoretical and practical 

limitations.  

 
3 https://www.iso.org/standard/77845.html  
4 https://www.iecee.org/certification/iec-standards/iec-61851-242014  

https://www.iso.org/standard/77845.html
https://www.iecee.org/certification/iec-standards/iec-61851-242014
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2. V2G and Ancillary Services: A profitability analysis 
under uncertainties 

This section deals with briefly presenting the research effort conducted in task T4.3 by adding a further 

level of technical detail those foreseen in the Executive Summary. The activity ended up with a 

profitability analysis (Bianchi, Falsone, & Vignali, 2023) with reference to an early framework for V2G 

optimal operation in presence of uncertainty (Vignali, Falsone, Ruiz, & Gruosso, 2022). The analysis 

provides necessary and sufficient conditions for profitability in a simplified case. Numerical simulations 

in MATLAB showcase the validity and effectiveness of the analysis and that it also holds for a more 

general case. 

2.1. Introduction 

EVs sales continue to break records as nearly 10% of global car sales were electric in 2021, four times 

the market share in 20195. This rapid and significant spread of EVs plays a fundamental role in the 

energy transition. In addition to the new challenges associated with charging needs, the introduction 

of EVs represents a new opportunity, thanks to the possible provision of ancillary services. Indeed, the 

modulation of the charging power, and even the discharge of the vehicles, enable the provision of 

services to the electricity network (Liu C. , Chau, Wu, & Gao, 2013). However, since an individual EV’s 

energy capacity is limited, EVs need to be grouped by means of EV aggregators to form a flexible load 

with enough energy content for grid operations. Once the fleet is formed, the aggregator must 

coordinate the actions of the EV pool to participate in electricity markets, guaranteeing compliance 

with traded consumption plans and services (Bessa & Matos, 2012). 

The optimal dispatch of the charging power of each vehicle is usually formulated as an optimization 

problem, in which the aggregator aims to maximize its revenues from the provision of services, 

minimizing at the same time the EVs charging costs while satisfying the requests of the EV owners, 

e.g., minimum charging level at departure. Solving this problem needs to account for several factors: 

aggregator business model, technical limitations of vehicles and aggregator, availability of vehicles, 

market outcomes. Realistic formulations of this problem necessarily involve considering uncertainty in 

the fleet behavior and energy markets. Specifically, it is necessary to model the random presence of 

vehicles, the initial uncertain SoC with which the vehicles start parking and the actual service signal 

provided by the Transmission System Operator (TSO). Several techniques have been proposed in the 

last two decades for solving this optimization problem, which differ on how uncertainty is handled and 

the modelling choices for the discussed factors (Garcia-Villalobos J. , Zamora, SAn Martin, Asensio, & 

Aperribay, 2014), (Tan & Ramachandaramurthy, 2016), (Nimalsiri, Mediwaththe, Ratnam, Shaw, & 

Halgamuge, 2019), for a comprehensive review on different strategies. 

In many of these works, costs-benefits analysis related to the provision of ancillary services have been 

made experimentally by, e.g., varying energy market prices and battery degradation costs, from the 

point of view of both EV owners and aggregators (Sortomme & El-Sharkawi, 2011), (De Los Rıos, 

Goentzel, Nordstrom, & Siegert, 2012), (Calvillo, Czechowski, Soder, Sanchez-Miralles, & Villar, 2016). 

 
5 https://www.iea.org/reports/global-ev-outlook-2022  

https://www.iea.org/reports/global-ev-outlook-2022
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However, the size of the benefits varies significantly due to varying modelling approaches, different 

assumptions, considered applications, countries, and vehicle types, often leading to inconsistent and 

contradictory results (Heilmann & Friedl, 2021). Also, to the best of authors’ knowledge, no-one 

provided an overall picture describing profitability conditions for offering balancing services. For 

example, one may be interested in assessing which should be the expected profit of an upward service 

in relation to the per unit energy cost used for charging the vehicle, to make this kind of service 

profitable. Clearly, answering to this question requires to account for the (uncertain) TSO signal, both 

in the modelling framework and in the costs-benefits analysis. This kind of analysis helps in 

incentivizing the participation of EVs’ owners in the mentioned aggregation scheme, thus contributing 

to the transition that the energy sector is facing which asks for additional sources of flexibility to 

guarantee reliable grid operation. 

Recently, a first attempt towards a comprehensive framework for optimal dispatching in presence of 

uncertainty has been made in (Vignali, Falsone, Ruiz, & Gruosso, 2022). The authors considered all the 

three sources of uncertainty discussed above, adopting a robust paradigm to enforce the constraints 

and an expectation paradigm for the cost function. However, they did not analyze the profitability of 

providing ancillary services. In this section, we build upon the framework introduced by (Vignali, 

Falsone, Ruiz, & Gruosso, 2022), and we provide necessary and sufficient conditions for the profitability 

of offering upward and downward balancing services. Specifically, we provide analytic conditions in a 

simplified case, and we show via simulation that they also hold for the general case. Based on these 

conditions, we also provide insights on how to make ancillary services more profitable by considering 

the possibility of participating also to intraday energy markets besides the day-ahead and ancillary 

service markets, to compensate for the effects of the actual provision of services during the day. 

2.2. Preliminaries 

Let us first briefly recall the framework introduced in (Vignali, Falsone, Ruiz, & Gruosso, 2022) and 

introduce two common scenarios we will consider in the profitability analysis. 

2.2.1. Framework 

In reference to an aggregator of EVs, as discussed reference in (Vignali, Falsone, Ruiz, & Gruosso, 2022) 

this study addresses the finite horizon optimal control problem. The objective is to plan the power 

exchange profile for the next day and determine the maximum amount of upward and downward 

power variations that the EV fleet can supply to the main grid. The aim is to minimize EV charging costs 

and maximize the revenues derived from providing ancillary services. 

To this end, the considered one-day time horizon is discretized into 𝑇 time intervals (referred to as 

timeslots) indexed by 𝑘 = {0, . . . , 𝑇 −  1}, each of duration 𝜏. The introduced framework is very 

general and considers several sources of uncertainty like the first 𝑎𝑖  and last 𝑑𝑖  timeslots EV 𝑖 is 

connected, the 𝑖-th battery energy content at EV arrival 𝑒𝑖
0, and the TSO service signal 𝜔𝑘  ∈  [−1, 1] 

modelling if and how much of the offered upward/downward services will be requested by the TSO. 

These are all random quantities as they are not known during day-ahead planning. 

2.2.2. Notation 

To improve readability, a summary of the notation used within this section is provided in the following. 
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𝑇, 𝑘, 𝜏 Time intervals, time index, and time interval duration  

𝑐𝑑𝑎𝑚, 𝑐𝑎𝑠𝑚, 𝑐𝑣𝑒ℎ 
Cost to buy energy on the day-ahead (𝑐𝑑𝑎𝑚) and ancillary service (𝑐𝑎𝑠𝑚) 

markets, and revenue (𝑐𝑣𝑒ℎ) paid to the owner of the vehicle 

𝑝𝑘,𝑖
𝑑𝑎𝑚, 𝑝𝑘,𝑖

𝑎𝑠𝑚 
Power bought on the day-ahead (𝑝𝑘,𝑖

𝑑𝑎𝑚) and ancillary service (𝑝𝑘,𝑖
𝑎𝑠𝑚) markets 

at time slot 𝑘 for the 𝑖-th EV 

𝑎𝑖 , 𝑑𝑖 Arrival and departure times of the 𝑖-th EV 

[∙]+, [∙]−, 𝐾𝑘,𝑠,𝑖 
Short form for [∙]+ = max {∙, 0} and [∙]− = [∙]+, and disturbance feedback 
term 

𝑐𝑠+, 𝑐𝑠−, 𝑐𝑒+, 𝑐𝑒−, 
𝑐𝑣+, 𝑐𝑣− 

Cost to buy (𝑐𝑠+) and sell (𝑐𝑠−) energy on the ancillary service and the day-
ahead markets (𝑐𝑒+ and 𝑐𝑒−) for the aggregator, cost per paid by the owner 
of the vehicle to buy (𝑐𝑣+) and sell (𝑐𝑣−) energy  

𝜔𝑘 , 𝑠𝑘,𝑖
+ , 𝑠𝑘,𝑖

− , 𝜔𝑠 
Uncertain service signal, maximum up (𝑠𝑘,𝑖

+ ) and down (𝑠𝑘,𝑖
− ) power variation 

offered by the 𝑖-th EV at the time slot 𝑘, and TSO service signal 

𝑒𝑖
𝑜, 𝑒𝑘,𝑖, 𝑒𝑖

𝑚𝑖𝑛, 𝑒𝑖
𝑚𝑎𝑥, 

𝑒𝑑𝑖 , 𝑒
−, 𝑒+, 𝑒0 

Initial energy content, energy content at the time slot 𝑘, minimum energy 
content, maximum energy content, energy at the departure of the 𝑖-th EV 

𝛼𝑖, 𝜂𝑘,𝑖, 𝜂𝑖
+, 𝜂𝑖

− 
Self-discharging losses, charging/discharging losses, charging losses, and 
discharging losses 

Δ𝑒
𝑜, Δ𝑒

𝑚𝑎𝑥 Short notation for 𝑒𝑜 − 𝑒0 and Δ𝑒
𝑚𝑎𝑥 − 𝑒+ 

𝑒𝑑𝑎𝑚, 𝑒𝑎𝑠𝑚 
𝑒𝑚𝑎𝑥, 𝑒𝑚𝑖𝑛   

Energy provision on the day-ahead and ancillary service markets for the 
aggregator 
Maximum and minimum values of the energy provision for the aggregator 

𝑝𝑘,𝑖 , 𝑝𝑖
𝑚𝑖𝑛, 𝑝𝑖

𝑚𝑎𝑥, 

𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 

Average charging power, minimum charging power, and maximum charging 
power of the 𝑖-th EV 
Minimum and maximum charging power of the aggregator 

𝛿  Symbol used for identifying the uncertain parameters,  

𝑒̃𝑑𝑎𝑚, 𝑒̃𝑎𝑠𝑚 Expected provision on the day-ahead and ancillary service markets 

𝐽𝐹𝐶
𝑜 , 𝐽𝐹𝐶

𝑎𝑠𝑚, 𝐽𝐹𝐶
Δ , 𝐽𝑃𝐶

o , 

𝐽𝑃𝐶
asm, 𝐽𝑃𝐶

Δ  
Cost functions in the free charge and paid charge cases 

 

2.2.3. EV modelling 

In (Vignali, Falsone, Ruiz, & Gruosso, 2022) each EV is modelled as a battery 

 𝑒𝑘+1,𝑖 = 𝛼𝑖𝑒𝑘,𝑖 + 𝜏 𝜂𝑘,𝑖 𝑝𝑘,𝑖,        𝑘 ∈ [𝑎𝑖, 𝑑𝑖], 2.1 
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where 𝑒𝑘,𝑖 is the energy content at the beginning of the time slot 𝑘, 𝑝𝑘,𝑖 denotes the average charging 

(𝑝𝑘,𝑖 > 0) or (𝑝𝑘,𝑖 < 0) power during the timeslot 𝑘, 𝛼𝑖 ∈ (0,1] models self-discharging losses, and  

 

𝜂𝑘,𝑖 = {

𝜂𝑖
+, 𝑝𝑘,𝑖 ≥ 0

1

𝜂𝑖
− , 𝑝𝑘,𝑖 < 0

 , 2.2 

models charging/discharging losses, 𝜂𝑖
+, 𝜂𝑖

− ∈ (0,1] being the charging/discharging efficiencies. The 

battery energy content 𝑒𝑘,𝑖 always stays within a minimum 𝑒𝑖
𝑚𝑖𝑛 > 0 and maximum 𝑒𝑖

𝑚𝑎𝑥 > 0 and 

therefore 

 𝑒𝑖
𝑚𝑖𝑛 ≤ 𝑒𝑘,𝑖 ≤ 𝑒𝑖

𝑚𝑎𝑥 , 2.3 

   
must hold for any timeslot 𝑘 ∈ [𝑎𝑖 , 𝑑𝑖] in which the 𝑖-th EV is connected to the charging station. 

Similarly, individual, and aggregate power exchange are constrained as 

 𝑝𝑘,𝑖 ∈ [−𝑝𝑖
𝑚𝑎𝑥, 𝑝𝑖

𝑚𝑎𝑥],        𝑘 ∈ [𝑎𝑖 , 𝑑𝑖]

𝑝𝑘,𝑖 = 0,                                 𝑘 ∉ [𝑎𝑖 , 𝑑𝑖]
 2.4 

   
since each EV has a maximum power exchange 𝑝𝑖

𝑚𝑎𝑥 when connected and its power exchange must 

be zero when disconnected, and 

 
−𝑝𝑚𝑎𝑥 ≤∑𝑝𝑘,𝑖 ≤ 𝑝

𝑚𝑎𝑥 ,

𝑁

𝑖=1

 2.5 

   
for all timeslots, as the charging stations are all connected to the same point of exchange with the grid, 

which can withstand a maximum power exchange equal to 𝑝𝑚𝑎𝑥. In most cases, a minimum battery 

energy content at departure is required by the user. This can be easily considered by enforcing the 

constraint 

 𝑒𝑑𝑖+1,𝑖 ≥ 𝑒𝑖
𝑜, 2.6 

   

where dove 𝑒𝑖
𝑜 ∈ [𝑒𝑖

𝑚𝑖𝑛, 𝑒𝑖
𝑚𝑎𝑥] is 𝑖-th EV desired energy at departure. 

2.2.4. Cost terms 

To charge the EVs, the aggregator must buy energy on the market, and it can do so both on the Day-

Ahead Market (DAM) or on the Ancillary Services Market (ASM). Let 𝑝𝑘,𝑖  =  𝑝𝑘,𝑖
𝑑𝑎𝑚  +  𝑝𝑘,𝑖

𝑎𝑠𝑚, 𝑝𝑘,𝑖
𝑑𝑎𝑚 and 

𝑝𝑘,𝑖
𝑎𝑠𝑚 being the portion of power bought in DAM and in ASM, respectively. At any timeslot 𝑘, buying 

an energy unit on the DAM costs 𝑐𝑘
𝑒+ to the aggregator, while selling energy to the grid pays  𝑐𝑘

𝑒− <

𝑐𝑘
𝑒+per energy unit. The aggregator buys energy whenever the net power requested by all EVs is 

positive and sells energy otherwise. The cost incurred for the DAM over the entire horizon is thus given 

by 

 

𝑐𝑑𝑎𝑚  =  ∑ 𝑐𝑘
𝑒+

𝑇−1

𝑘=0

[∑𝜏𝑝𝑘,𝑖
𝑑𝑎𝑚

𝑁

𝑖=1

]

+

− 𝑐𝑘
𝑒− [∑𝜏𝑝𝑘,𝑖

𝑑𝑎𝑚

𝑁

𝑖=1

]

−

, 2.7 
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where [𝑣]+ = 𝑚𝑎𝑥 {𝑣, 0} denotes the positive part of its argument and [𝑣]− = [−𝑣]+ its negative 

part. As for the ancillary services, since they are typically divided into upward and downward services, 

it is convenient to express 

 𝑝𝑘,𝑖
𝑎𝑠𝑚 = [𝜔𝑘]

+𝑠𝑘,𝑖
+ − [𝜔𝑘]

−𝑠𝑘,𝑖
− , 2.8 

   
where 𝑠𝑘,𝑖

+ ≥ 0  and 𝑠𝑘,𝑖
− ≥ 0  are the maximum power variations offered by 𝑖-th EV in timeslot 𝑘 for 

the downward and upward services respectively, and 𝜔𝑘 is the uncertain service signal sent by the 

TSO. 

An energy unit bought (as a downward service) on the ASM costs  𝑐𝑘
𝑠+ < 𝑐𝑘

𝑒+, while an energy unit 

sold (as an upward service) pays 𝑐𝑘
𝑠− > 𝑐𝑘

𝑒+, leading to the following total cost incurred by the 

aggregator 

 
𝑐𝑣𝑒ℎ = ∑ 𝑐𝑘

𝑠+∑𝜏[𝜔𝑘]
+𝑠𝑘,𝑖
+

𝑁

𝑖=1

𝑇−1

𝑘=0

− 𝑐𝑘
𝑠−∑𝜏[𝜔𝑘]

−𝑠𝑘,𝑖
−

𝑁

𝑖=1

, 2.9 

   
where the sign and magnitude of 𝜔𝑘 ∈ [−1, 1] determine whether an upward (𝜔𝑘 < 0) or downward 

(𝜔𝑘 > 0) will be requested by the TSO and by which extent, or if no service will be requested (𝜔𝑘 =

0), for each timeslot 𝑘. 

Depending on the situation, the aggregator may want to charge/pay the EV owners for 

recharging/discharging their vehicles. In such cases, the aggregator will receive 𝑐𝑘
𝑣+ > 𝑐𝑘

𝑒+ per energy 

unit used for charging an EV and will pay  𝑐𝑘
𝑣+ > 𝑐𝑘

𝑣− to the EV owner for each energy unit discharged6, 

thus having the following additional cost term 

 
𝑐𝑣𝑒ℎ = ∑∑𝑐𝑘

𝑣−[𝜏𝑝𝑘,𝑖]
−
− 𝑐𝑘

𝑣+[𝜏𝑝𝑘,𝑖]
+

𝑁

𝑖=1

𝑇−1

𝑘=0

. 2.10 

   

2.2.5. Optimal planning 

Unfortunately, an optimization problem involving the introduced constraints and cost terms would be 

ill-posed due to their dependency from the uncertain parameters 𝑎𝑖, 𝑑𝑖, 𝑒𝑖
0, and 𝜔𝑘, collectively 

referred to as 𝛿. The authors in (Vignali, Falsone, Ruiz, & Gruosso, 2022) proposes to adopt a robust 

paradigm to enforce the constraints and an expectation paradigm for the cost function. Accordingly, 

we will focus on the following problem 

 min
𝑝𝑘,𝑖
𝑑𝑎𝑚, 𝑠𝑘,𝑖

+ ,   𝑠𝑘,𝑖
−

𝑐𝑑𝑎𝑚 +  𝔼[𝑐𝑎𝑠𝑚 + 𝑐𝑣𝑒ℎ]

𝑠. 𝑡. 𝑒𝑞. 2.5, ∀𝑘, ∀𝛿

𝑒𝑞𝑠. 2.3, 2.4, 2.6, ∀𝑖, ∀𝛿

𝑠𝑘,𝑖
+ , 𝑠𝑘,𝑖

− ≥ 0 ∀𝑖, ∀𝑘 

 . 2.11 

   

 
6 Costs for battery degradation can be accounted for in 𝑐𝑘

𝑣− (Hoke, Brissette, Smith, Pratt, & Maksimovic, 2014). 
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More specifically, we will consider two business models: 1) Free-Charge (FC), without the 𝑐𝑣𝑒ℎ term, 

representative of a company willing to provide the recharge service to its employees and, ii) Paid 

Charge (PC), with the 𝑐𝑣𝑒ℎ term, in case EVs charging is the core business of the parking lot owner. 

 

2.3. Profitability Analysis 

We are interested in providing conditions under which the provision of ancillary services is profitable 

for an aggregator of EVs adopting either the Free Charge (FC) or Paid Charge (PC) business model 

introduced above. Numerical investigations, despite being informative, can hardly give an overall 

picture on profitability, as results are masked by the complexity of problem 2.11 and by the uncertainty 

affecting the simulation of optimal control policies. Therefore, in this section, we begin by simplifying 

the framework and subsequently derive precise necessary and sufficient conditions for achieving 

profitability. 

2.3.1. Framework reduction 

We impose the following simplifying assumptions. We consider the optimization of one vehicle (𝑁 =

 1 and we drop the subscript 𝑖), as multiple vehicles can be considered, to some extent, a unique “big” 

vehicle. We set 𝜂𝑘  =  𝛼 =  1 as they are typically close to unity. All costs are time-invariant (we drop 

the subscript 𝑘). Since the costs are time-invariant, we can consider a unique timeslot (𝑇 =  1) lasting 

𝜏 =  24ℎ and reduce the analysis to energy considerations. Since 𝑇 =  1, we set 𝑎𝑖  =  𝑎 =  𝑑𝑖  =

 𝑑 =  0, which are now deterministic. We consider only the TSO request 𝜔𝑘  =  𝜔 as uncertain 

quantity since the initial energy 𝑒𝑖
𝑜  =  𝑒0  ∈  [𝑒𝑚𝑖𝑛, 𝑒

𝑜] is only affecting the constraints. Under these 

assumptions, we have 

 𝑝 =  𝑝𝑑𝑎𝑚 + 𝑠+[𝜔]+ − 𝑠−[𝜔]−,

𝑒1 = 𝑒0 + 𝜏𝑝 = 𝑒0 + 𝜏𝑝
𝑑𝑎𝑚 + 𝜏𝑠+[𝜔]+ − 𝜏𝑠−[𝜔]−,

 2.12 

   
and 

 𝑐𝑑𝑎𝑚  = 𝑐𝑒+[𝜏𝑝𝑑𝑎𝑚]+ − 𝑐𝑒−[𝜏𝑝𝑑𝑎𝑚]−

𝑐𝑎𝑠𝑚   = 𝑐𝑠+[𝜔]+𝜏𝑠+ − 𝑐𝑠−[𝜔]−𝜏𝑠−

𝑐𝑣𝑒ℎ   = 𝑐𝑣−[𝜏𝑝]− − 𝑐𝑣+[𝜏𝑝]+
, 2.13 

   
and the optimization problem 2.11 becomes 

 min
𝑝𝑘,𝑖
𝑑𝑎𝑚, 𝑠𝑘,𝑖

+ ,   𝑠𝑘,𝑖
−

𝑐𝑑𝑎𝑚 +  𝔼[𝑐𝑎𝑠𝑚 + 𝑐𝑣𝑒ℎ]

𝑠. 𝑡. 𝑒𝑚𝑖𝑛 ≤ 𝑒𝑜 ≤ 𝑒0 + 𝜏𝑝 ≤ 𝑒
𝑚𝑎𝑥, ∀𝜔

−𝑝𝑚𝑎𝑥 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥, ∀𝜔

𝑠+, 𝑠− ≥ 0  

 . 2.14 

   
Since we typically have 𝜏𝑝𝑚𝑎𝑥 ≫ 𝑒𝑚𝑎𝑥 (over the entire horizon we can charge the EV fully), the power 

constraints are redundant, and we are left with only energy quantities in eq. 2.14. Let 𝑒𝑑𝑎𝑚 = 𝜏𝑝𝑑𝑎𝑚, 

𝑒+ = 𝜏𝑠+, and 𝑒− = 𝜏𝑠−, the robust counterpart of 𝑒𝑜 ≤ 𝑒0 + 𝜏𝑝 ≤  𝑒
𝑚𝑎𝑥 for all 𝜔 affecting 𝜏𝑝 is 

given by 
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 Δ𝑒
𝑜 + 𝑒− ≤ 𝑒𝑑𝑎𝑚 ≤ Δ𝑒

𝑚𝑎𝑥 − 𝑒+, 2.15 
   

where  Δ𝑒
𝑜 = 𝑒𝑜 − 𝑒0 e Δ𝑒

𝑚𝑎𝑥 = 𝑒𝑚𝑎𝑥 − 𝑒0, and it implies 𝑒𝑑𝑎𝑚 ≥ 0. Problem 2.11 can thus be further 

reduced to 

 min
𝑒𝑑𝑎𝑚, 𝑒+,   𝑒−

𝑐𝑑𝑎𝑚 + 𝔼[𝑐𝑎𝑠𝑚 + 𝑐𝑣𝑒ℎ]

𝑠. 𝑡. Δ𝑒
𝑜 + 𝑒− ≤ 𝑒𝑑𝑎𝑚 ≤ Δ𝑒

𝑚𝑎𝑥 − 𝑒+
 . 2.16 

   
Before analyzing 2.16 it is worth recalling some inequalities involving the unitary energy prices 

 𝑐𝑣− > 𝑐𝑣+ > 𝑐𝑒+ > 𝑐𝑒−,
𝑐𝑠− > 𝑐𝑒+ > 𝑐𝑠+.

 2.17 

   

2.3.2. Profitability conditions: free charge 

Let us consider the FC case first, where the cost term 𝑐𝑣𝑒ℎ is absent. To assess whether offering 

ancillary services is profitable or not, consider the optimal solution when such services are not offered. 

This entails solving the following optimization problem 

 min
𝑒𝑑𝑎𝑚≥0

𝑐𝑑𝑎𝑚

𝑠. 𝑡. Δ𝑒
𝑜 ≤ 𝑒𝑑𝑎𝑚 ≤ Δ𝑒

𝑚𝑎𝑥
, 2.18 

   

whose optimal solution is 𝑒𝑑𝑎𝑚 = 𝛥𝑒
𝑜 since 𝑐𝑑𝑎𝑚 = 𝑐𝑒+ 𝑒𝑑𝑎𝑚 due to 𝑒𝑑𝑎𝑚 ≥ 0 and 𝑐𝑒+ > 0. If we 

now introduce the ancillary service provision, we are back to the problem 2.16 without  𝑐𝑣𝑒ℎ. Clearly, 

𝑒𝑎𝑠𝑚 = 𝛥𝑒
𝑜  with 𝑒+ = 0 and 𝑒− = 0 is feasible for the problem 2.16 and yields the same cost 

 𝐽𝐹𝐶
𝑜 = 𝑐𝑒+[𝑒𝑑𝑎𝑚]+ − 𝑐𝑒−[𝑒𝑑𝑎𝑚]− = 𝑐𝑒+𝑒𝑑𝑎𝑚 = 𝑐𝑒+Δ𝑒

𝑜, 2.19 
   

the second and third equality being due to 𝑒𝑑𝑎𝑚 = Δ𝑒
𝑜 > 0. Therefore, for the problem 2.16 without 

𝑒𝑣𝑒ℎ to have a different solution there must exist a triplet 𝑒̃𝑑𝑎𝑚 = Δ𝑒
𝑜 + 𝑣, 𝑒+ ≥ 0 and 𝑒− ≥ 0 

satisfying the constraints of the problem 2.16, i.e.,  

 Δ𝑒
𝑜 + 𝑒− ≤ Δ𝑒

𝑜 + 𝑣 ≤ Δ𝑒
𝑚𝑎𝑥 − 𝑒+, 2.20 

   
and achieving a better cost. Constraint 2.20 together with non-negativity of 𝑒+ and 𝑒− implies the 

following chain of inequalities 

 0 ≤ 𝑒− ≤ 𝑣 ≤ Δ𝑒
𝑚𝑎𝑥 − Δ𝑒

𝑜 − 𝑒+ ≤ Δ𝑒
𝑚𝑎𝑥 − Δ𝑒

𝑜, 2.21 
   

and the cost associated to the new solution is 

 𝐽𝐹𝐶
𝑎𝑠𝑚 = 𝑐𝑒+[𝑒̃𝑑𝑎𝑚]+ − 𝑐𝑒−[𝑒̃𝑑𝑎𝑚]− + 𝑐𝑠+𝔼+𝑒+ − 𝑐𝑠−𝔼−𝑒−

= 𝑐𝑒+Δ𝑒
𝑜 + 𝑐𝑒+𝑣 + 𝑐𝑠+𝔼+𝑒+ − 𝑐𝑠−𝔼−𝑒−

= 𝐽𝐹𝐶
0 + 𝑐𝑒+𝑣 + 𝑐𝑠+𝔼+𝑒+ − 𝑐𝑠−𝔼−𝑒−⏟                  

𝐽𝐹𝐶
Δ  

, 2.22 
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where 𝔼+ = 𝔼[[𝜔]+] and 𝔼− = 𝔼[[𝜔]−], the second equality is due to 𝑒̃𝑑𝑎𝑚= 𝛥𝑒
𝑜 + 𝑣 ≥ 0 since 𝑣 ≥ 0 

by eq. 2.21, and the last equality is by definition of 𝐽𝐹𝐶
𝑜 . We thus need to analyze the sign of 𝐽𝐹𝐶

𝛥 . For 

any triplet (𝑣, 𝑒+, 𝑒−) satisfying eq. 2.21, we have  

 𝐽𝐹𝐶
Δ = 𝑐𝑒+𝑣 + 𝑐𝑠+𝔼+𝑒+ − 𝑐𝑠−𝔼−𝑒−

≥ 𝑐𝑒+𝑣 − 𝑐𝑠−𝔼−𝑒−

≥ (𝑐𝑒+ − 𝑐𝑠−𝔼−)𝑒−

≥ min{0, (𝑐𝑒+ − 𝑐𝑠−𝔼−)(Δ𝑒
𝑚𝑎𝑥 − Δ𝑒

𝑜)},

 2.23 

   
where the first inequality holds for any 𝑒+ ≥ 0 (with 𝑒+ ≥ 0 as edge-case), the second inequality holds 

for any 𝑣 ≥ 𝑒− (with 𝑣 = 𝑒−as edge-case), and the last inequality holds for any 𝑒− such that 0 ≤ 𝑒− ≤

𝛥𝑒
𝑚𝑎𝑥 − 𝛥𝑒

𝑜, with  𝑒− = 0 or 𝑒− = 𝛥𝑒
𝑚𝑎𝑥 − 𝛥𝑒

𝑜 as edge-cases, each one yielding the respective term 

inside the minimum. Since 𝛥𝑒
𝑚𝑎𝑥 − 𝛥𝑒

𝑜 > 0, then, recalling 𝑒̃𝑑𝑎𝑚 = 𝛥𝑒
𝑜 + 𝑣, we have the following 

edge-cases: 

 

{
 
 

 
 

𝑣 = 0
𝑒̃𝑎𝑠𝑚 = Δ𝑒

𝑜

𝑒+ = 0
𝑒− = 0
𝐽𝐹𝐶
Δ = 0

⇔ 𝑐𝑒+ > 𝑐𝑠+𝔼−, 2.24 

   
 

{
 
 

 
 
𝑣 = Δ𝑒

𝑚𝑎𝑥 − Δ𝑒
𝑜

𝑒̃𝑑𝑎𝑚 = Δ𝑒
𝑚𝑎𝑥  

𝑒+ = 0
𝑒− = Δ𝑒

𝑚𝑎𝑥 − Δ𝑒
𝑜

𝐽𝐹𝐶
Δ < 0

⇔ 𝑐𝑒+ < 𝑐𝑠−𝔼−. 2.25 

   

Therefore, if 𝑐𝑒+ > 𝑐𝑠− 𝔼−, then  𝐽𝐹𝐶
𝛥 ≥ 0 for any feasible alternative solution, hence 𝑒𝑑𝑎𝑚 = 𝛥𝑒

𝑜 

remains the optimal solution. Otherwise, if 𝑐𝑒+ < 𝑐𝑠− 𝔼−, then choosing 𝑒̃𝑑𝑎𝑚 = 𝛥𝑒
𝑜 + 𝑣 =  𝛥𝑒

𝑚𝑎𝑥, 

𝑒+ = 0, and 𝑒− = 𝛥𝑒
𝑚𝑎𝑥 − 𝛥𝑒

𝑜 yields 𝐽𝐹𝐶
𝛥 = (𝑐𝑒+ − 𝑐𝑠− 𝔼− )(𝛥𝑒

𝑚𝑎𝑥 − 𝛥𝑒
𝑜 ) < 0 and offering (upward) 

services is profitable. Note that since  (𝑐𝑒+ − 𝑐𝑠− 𝔼− )(𝛥𝑒
𝑚𝑎𝑥 − 𝛥𝑒

𝑜 ) <  𝐽𝐹𝐶
𝛥  for any feasible solution, 

we have that 𝑒̃𝑑𝑎𝑚 = 𝛥𝑒
𝑚𝑎𝑥, 𝑒+ = 0, and 𝑒− = 𝛥𝑒

𝑚𝑎𝑥 − 𝛥𝑒
𝑜 is actually the optimal solution of the 

problem 2.16 without 𝑐𝑣𝑒ℎ, so offering downward services is never convenient and the obtained 

condition is both necessary and sufficient for profitability. 

The condition is also intuitive as providing upward services is convenient only if their expected revenue  

𝑐𝑠− 𝔼− per unit is greater than the cost 𝑐𝑒+ of buying an energy unit in the DAM. Note also how the 

optimal strategy is to offer as an upward service only the quantity 𝛥𝑒
𝑚𝑎𝑥 − 𝛥𝑒

𝑜 = 𝑒𝑚𝑎𝑥 − 𝑒𝑜 as offering 

more energy does not guarantee to satisfy the final energy constraint  𝑒1 ≥ 𝑒
𝑜. 

2.3.3. Profitability conditions: paid charge 

Let us now focus on the PC case. As before, consider first the optimal solution when services are not 

offered. This entails solving the problem 

 min
𝑒𝑑𝑎𝑚≥0

𝑐𝑑𝑎𝑚 + 𝑐𝑣𝑒ℎ

𝑠. 𝑡. Δ𝑒
𝑜 ≤ 𝑒𝑑𝑎𝑚 ≤ Δ𝑒

𝑚𝑎𝑥
, 2.26 
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where 𝑐𝑣𝑒ℎ is now a deterministic cost since 𝜏𝑝 =  𝑒𝑑𝑎𝑚  >  0 when 𝑒+  =  𝑒−  =  0. Moreover, 

𝑐𝑑𝑎𝑚 + 𝑐𝑣𝑒ℎ = (𝑐𝑒+ − 𝑐𝑣+ ) 𝑒𝑑𝑎𝑚  and, since 𝑐𝑒+ − 𝑐𝑣+ < 0 by eq. 2.17, then the optimal solution of 

the problem 2.26 is 𝑒𝑑𝑎𝑚 = 𝛥𝑚𝑎𝑥. 

If we now introduce the ancillary service provision, we are back to the problem 2.16. Clearly, 𝑒𝑑𝑎𝑚 =

Δe
𝑚𝑎𝑥 with 𝑒+ = 0 and 𝑒− = 0 is feasible for the problem 2.16 and yields the same cost 

 𝐽𝑃𝐶
𝑜 = (𝑐𝑒+ − 𝑐𝑣+)[𝑒𝑑𝑎𝑚]+ − (𝑐𝑒− − 𝑐𝑣−)[𝑒𝑑𝑎𝑚]−

= (𝑐𝑒+ − 𝑐𝑣+)𝑒𝑑𝑎𝑚 = (𝑐𝑒+ − 𝑐𝑣+)Δ𝑒
𝑚𝑎𝑥,

 2.27 

   

equalities being due to 𝑒𝑑𝑎𝑚 = Δ𝑒
𝑚𝑎𝑥 > 0. Therefore, for the problem 2.16 to have a different solution 

there must exist a triplet 𝑒̃𝑑𝑎𝑚 = 𝛥𝑒
𝑚𝑎𝑥 + 𝑣, 𝑒+ ≥ 0 and 𝑒− ≥ 0 satisfying the constraint of the 

problem 2.16, i.e.,  

 Δ𝑒
𝑜 + 𝑒− ≤ Δ𝑒

𝑚𝑎𝑥 + 𝑣 ≤ Δ𝑒
𝑚𝑎𝑥 − 𝑒+, 2.28 

   
and achieving a better cost. Constraint 2.16 together with non-negativity of 𝑒+ and 𝑒− implies the 

following chain of inequalities 

 −(Δ𝑒
𝑚𝑎𝑥 − Δ𝑒

𝑜) ≤ 𝑒− − (Δ𝑒
𝑚𝑎𝑥 − Δ𝑒

𝑜) ≤ 𝑣 ≤ −𝑒+ ≤ 0, 2.29 
   

and the cost associated to the new solution is 

 𝐽𝑃𝐶
𝑎𝑠𝑚 = 𝑐𝑒+[𝑒̃𝑑𝑎𝑚]+ − 𝑐𝑒−[𝑒̃𝑑𝑎𝑚]− + 𝑐𝑠+𝔼+𝑒+ − 𝑐𝑠−𝔼−𝑒−

+ 𝑐𝑣−𝔼[[𝑒̃𝑑𝑎𝑚 + 𝑒+[𝜔]+ − 𝑒−[𝜔]−]−]

− 𝑐𝑣+𝔼[[𝑒̃𝑑𝑎𝑚 + 𝑒+[𝜔]+ − 𝑒−[𝜔]−]+]

= 𝑐𝑒+Δ𝑒
𝑚𝑎𝑥 + 𝑐𝑒+𝑣 + 𝑐𝑠+𝔼+𝑒+ − 𝑐𝑠−𝔼−𝑒−

−𝑐𝑣+𝔼[Δ𝑒
𝑚𝑎𝑥 + 𝑣 + 𝑒+[𝜔]+ − 𝑒−[𝜔]−]

= (𝑐𝑒+ − 𝑐𝑣+)Δ𝑒
𝑚𝑎𝑥 + (𝑐𝑒+ − 𝑐𝑣+)𝑣

+ (𝑐𝑠+ − 𝑐𝑣+)𝔼+𝑒+ + (𝑐𝑣+ − 𝑐𝑠−)𝔼−𝑒−

= 𝐽𝑃𝐶
𝑜 + (𝑐𝑒+ − 𝑐𝑣+)𝑣 + (𝑐𝑠+ − 𝑐𝑣+)𝔼+𝑒+ + (𝑐𝑣+ − 𝑐𝑠−)𝔼−𝑒−⏟                                  

𝐽𝑃𝐶
Δ  

, 2.30 

   

where the second equality is due to 𝑒̃𝑑𝑎𝑚 = 𝛥𝑒
𝑚𝑎𝑥 + 𝑣 ≥ 0 since 𝑣 ≥ −(𝛥𝑒

𝑚𝑎𝑥 − 𝛥𝑒
𝑜 ) by eq. 2.29 

together with 𝑒̃𝑎𝑠𝑚 + 𝑒+ [𝜔]+ − 𝑒− [𝜔]− ≥ 𝛥𝑒
𝑚𝑎𝑥 + 𝑣 − 𝑒− ≥ 𝛥𝑒

𝑜 by eq. 2.29, nonnegativity of 𝑒+ 

and 𝑒−, and the fact that 𝜔 ∈  [−1, 1]. The third equality is due to linearity of the expected value 

operator and the last equality uses the definition of 𝐽𝑃𝐶
𝑜  and 𝐽𝑃𝐶

Δ = (𝑐𝑒+ − 𝑐𝑣+)𝑣 + (𝑐𝑠+ −

𝑐𝑣+)𝔼+𝑒+ + (𝑐𝑣+ − 𝑠−)𝔼−𝑒−. Similarly, to the FC case, we need to analyze the sign of 𝐽𝑃𝐶
Δ . 

To ease the notation, let 𝑔𝑜  = 𝑐𝑣+  − 𝑐𝑒+ > 0, 𝑔+ = 𝔼+(𝑐𝑣+ − 𝑐𝑠+ ) > 0, and 𝑔− = 𝔼− (𝑐𝑠− −

𝑐𝑣+ ) > 0, inequalities being due to eq. 2.17. For any triplet (𝑣, 𝑒+, 𝑒−) satisfying eq. 2.29, we have 

 𝐽𝑃𝐶
Δ = −𝑔𝑜𝑣 − 𝑔+𝑒+ − 𝑔−𝑒− 

≥ (𝑔+ − 𝑔𝑜)𝑣 − 𝑔−𝑒−

≥ min{0, (𝑔𝑜 − 𝑔+)(Δ𝑒
𝑚𝑎𝑥 − Δe

∘ ),−𝑔−(Δ𝑒
𝑚𝑎𝑥 − Δe

o)}

, 2.31 
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where the first inequality is due to −𝑒+ ≥ 𝑣 (with 𝑒+ = −𝑣 as edge-case) and the second inequality is 

given by the fact that, due to 𝑒− ≤ 𝑣 + 𝛥𝑒
𝑚𝑎𝑥 − 𝛥𝑒

𝑜 with 𝑣 ≤ 0 and 𝑒− ≥ 0, we are left with three 

possible edge-cases: 𝑣 = 𝑒− = 0 or 𝑣 =  −(Δ𝑒
𝑚𝑎𝑥 − Δe

o) and 𝑒− = 0 or 𝑣 = 0 and 𝑒− = Δ𝑒
𝑚𝑎𝑥 − Δe

o, 

(with 𝑒+ = −𝑣 in all cases), each one yielding the respective term inside the minimum. Since 𝛥𝑒
𝑚𝑎𝑥 −

𝛥𝑒
𝑜 > 0, then, recalling 𝑒̃𝑑𝑎𝑚 = 𝛥𝑒

𝑚𝑎𝑥 + 𝑣, we have the following edge-cases: 

 

{
 
 

 
 

𝑣 = 0
𝑒̃𝑑𝑎𝑚 = Δ𝑒

𝑚𝑎𝑥

𝑒+ = 0
𝑒− = 0
𝐽𝑃𝐶
Δ = 0

⇔ {
𝑔+ − 𝑔𝑜 < 0
𝑔− < 0

 , 2.32 

   
 

{
 
 

 
 
𝑣 = −(Δ𝑒

𝑚𝑎𝑥 − Δe
o) 

𝑒̃𝑑𝑎𝑚 = Δ𝑒
𝑚𝑎𝑥

𝑒+ = Δ𝑒
𝑚𝑎𝑥 − Δe

o

𝑒− = 0
𝐽𝑃𝐶
Δ < 0

⇔ {
𝑔+ − 𝑔𝑜 > 0

𝑔− < 𝑔+ − 𝑔𝑜
, 2.33 

   
 

{
 
 

 
 

𝑣 = 0 
𝑒̃𝑑𝑎𝑚 = Δ𝑒

𝑚𝑎𝑥

𝑒+ = 0
𝑒− = Δ𝑒

𝑚𝑎𝑥 − Δe
o

𝐽𝑃𝐶
Δ < 0

⇔ {
𝑔− > 0

𝑔− > 𝑔+ − 𝑔𝑜
. 2.34 

   
Now let us notice that 𝑔𝑜   =  𝑐𝑣+ − 𝑐𝑒+ represents the marginal gain of buying an energy unit in the 

DAM and selling it to the vehicle, 𝑔+ = 𝔼+ (𝑐𝑣+ − 𝑐𝑠+ ) represents the marginal gain of buying an 

energy unit in the ASM (downward service) and selling it to the vehicle, 𝑔− = 𝔼− (𝑐𝑠− − 𝑐𝑣+ ) 

represents the marginal gain of selling an energy unit in the ASM (upward service) instead of selling it 

to the vehicle (i.e., the actual (expected) gain in offering the upward service), and 𝑔0
+ = 𝑔+ − 𝑔𝑜 

represents the marginal gain of buying an energy unit in the ASM (downward service) instead of in the 

DAM to sell to the vehicle (i.e., the actual (expected) gain in offering the downward service). Given the 

preceding observations, we need to focus on 𝑔0
+ and 𝑔− only, and the above optimality conditions 

becomes also intuitive. 

Similarly, to the FC case, since each edge-case achieves the minimum of 𝐽𝑃𝐶
Δ  under the respective 

conditions on 𝑔𝑜, 𝑔+, and 𝑔−, we have that each edge-case is actually the optimal solution of the 

problem 2.16 under the corresponding conditions. Therefore, the above conditions on 𝑔𝑜, 𝑔+, and 𝑔− 

are both necessary and sufficient for profitability of upward/downward services. 



 

Deliverable D4.3 

Advanced flexibility management system description and functionalities V1.0 

 

 
Page 27 of 62 

 
 

   

 
Figure 1. Partition of the (𝒈𝟎

+, 𝒈−) plane induced by the profitability conditions in the PC case. Each region 
represents under which conditions the service is profitable (hence offered). 

 

To aid the interpretation, we report in Figure 1 the partition of the (𝑔0
+ , 𝑔−) plane induced by the 

edge-cases conditions. In the III quadrant 𝑔0
+ < 0 and 𝑔− < 0, meaning that there is no advantage in 

offering a downward service with respect to (w.r.t) buying energy on the DAM and there is no gain in 

offering an upward service instead of selling energy to the vehicle, hence the best strategy is to fully 

charge the vehicle buying from the DAM and not to offer any service. If 𝑔0
+ > 0 and 𝑔− < 𝑔0

+, then 

offering a downward service instead of buying energy on the DAM is profitable, and offering an upward 

service is either not profitable (IV quadrant) or not as profitable as a downward one (lower part of I 

quadrant), hence the best strategy is to fully charge the vehicle buying 𝛥𝑒
𝑜 from DAM and 𝛥𝑒

𝑚𝑎𝑥 − 𝛥𝑒
𝑜 

from ASM as a downward service. Finally, if  𝑔− > 0 e 𝑔− > 𝑔0
+, then offering an upward service w.r.t. 

selling energy to the vehicle is profitable and offering a downward service is either not profitable (II 

quadrant) or not as profitable as an upward one (upper part of I quadrant), hence the optimal solution 

is to fully charge the vehicle buying from the DAM and offer 𝛥𝑒
𝑚𝑎𝑥 − 𝛥𝑒

𝑜 as an upward service. 

Finally, note that the cost coefficients involved in the analysis are 𝑐𝑣+, 𝑐𝑒+, 𝑐𝑠+, and 𝑐𝑠−, while 𝑐𝑒− 

and 𝑐𝑣− do not appear. This is because with a single timeslot, the vehicle cannot be discharged, hence 

𝑝𝑑𝑎𝑚 and 𝑝 are always positive. We expect these cost coefficients to pop up in the multiple timeslot 

case, whose analysis is left as a future research effort. 

2.3.4. Successive markets and unbalance 

By solving the problem 2.11, the aggregator computes the optimal amount of energy to buy or sell on 

the energy and ancillary services markets. According to the setting in (Vignali, Falsone, Ruiz, & Gruosso, 

2022), this decision is taken at day 𝑡 −  1 (i.e., the day ahead) and implemented as-is in day 𝑡 (i.e., the 

day after). However, in practice, as time goes by in day 𝑡, the aggregator can update its profile for the 

remaining part of day 𝑡 by buying or selling energy on the so-called infra-day markets or can even 

choose not to follow the scheduled profile, thus unbalancing the grid. This possibility is currently not 

exploited in (Vignali, Falsone, Ruiz, & Gruosso, 2022), but it could be included by making 𝑝𝑘,𝑖 

dependent on the TSO service signal  𝜔𝑠, 𝑠 = {0,… , 𝑘 −  1}, with an additive “disturbance feedback” 
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term 𝐾𝑘,𝑠,𝑖   𝜔𝑠. The gain 𝐾𝑘,𝑠,𝑖 will still be optimized the day ahead, but it will produce a power profile 

𝑝𝑘,𝑖  which, at day 𝑡, changes according to the actual realization of the TSO service signal up to timeslot 

𝑘 −  1, which will be known at timeslot 𝑘 of day 𝑡. This modification would increase the profitability 

of the ancillary services, as the following example clarifies. 

Consider offering an upward ancillary service in the PC case: the analysis in Section 2.3.3 shows that it 

is profitable if and only if the return of selling to the ancillary services market is greater than selling to 

the user. When this is the case, the optimal strategy is to sell the entire (allowed by the user) vehicle 

capacity to the market. However, if the aggregator was allowed to unbalance, he could sell the entire 

capacity of the vehicles as an upward service, wait for the request by the TSO, and – afterwards – 

absorb the same amount of energy that has been requested by the EV users (i.e., disturbance feedback 

with unitary gain), eventually incurring in unbalance costs. If the unbalance cost is sufficiently small, 

this strategy would lead to a greater profitability, since the vehicles would depart fully charged 

independently on the actual realization of the TSO service signal.  

2.4. Case Study 

Here we make some simulations using the full-fledged framework of (Vignali, Falsone, Ruiz, & Gruosso, 

2022) to show that the conditions found in Section 2.3 are sufficient also for the general case, without 

simplifying assumptions. Due space limits, we investigate the paid charge case only. 

We consider the case of a company car park composed of 𝑁 =  100 slots, each assigned to a single 

user indexed with 𝑖. The 24 hours time horizon is discretized into 𝑇 =  96 time slots of 𝜏 =  15 

minutes each. Vehicle 𝑖 arrives uniformly at random between 6:00 AM and 8:00 AM and leaves 

uniformly at random between 4:00 PM and 8:00 PM. For each vehicle 𝑖, we set 𝜂𝑖
+  = 𝜂𝑖

−  =  0.97, 

𝑝𝑖
𝑚𝑎𝑥  = −𝑝𝑖

𝑚𝑖𝑛  = 22 𝑘𝑊, 𝑒𝑖
𝑚𝑖𝑛   =  0 𝑘𝑊ℎ, and  𝑒𝑖

𝑜 = 0.7𝑒𝑖
𝑚𝑎𝑥, with 𝑒𝑖

𝑚𝑎𝑥 ∈ [40, 70]  and  𝑒𝑖
𝑜 ∈

[0.1, 0.3]𝑘𝑊ℎ extracted at random according to a uniform distribution. The maximum power that can 

be exchanged with the grid is set to 𝑝𝑚𝑎𝑥 = −𝑝𝑚𝑖𝑛 = 600 𝑘𝑊. The energy unitary prices7 are shown 

in Figure 2 while the acceptance probabilities for the ASM are set to 𝜋𝑘
+ = 0.6  and 𝜋𝑘

− = 0.1 for 

downward and upward services, respectively. 

The results of our numerical investigation are summarized in Figure 3 where we report the optimal 

charging power profile ∑ 𝑝𝑘,𝑖
𝑁
𝑖=1 , 𝑘 = {1,… , 𝑇 − 1}, of the aggregator (bottom plots) and the 

corresponding working point in the (𝑔0
+, 𝑔−) plane (top plots), using day-averaged prices to compute 

𝑔0
+ and 𝑔−, in three different cases (left to right). Different colors denote energy bought on different 

markets: day-ahead market (i.e., no service) (red), downward service (green), upward service (blue). 

Dashed line denotes the aggregate power limit. From left to right: no service case, downward service 

case, upward service case are reported, respectively. With the parameter values introduced before, 

the optimal charging policy consists in buying all the energy on the DAM and use it to fully charge the 

vehicles, see Figure 3 (bottom left) where the power bought by the aggregator is red (i.e., bought from 

DAM) at all time slots. Indeed, by considering the average energy prices and computing 𝑔0
+ and 𝑔−, 

we fall into the no-service case, as shown in Figure 3 (top left). If we now reduce the vehicle prices and 

set them to 𝑐𝑣+ = 0.165 €/𝑘𝑊ℎ and 𝑐𝑣− = 0.180 €/𝑘𝑊ℎ, then we can see that downward ancillary 

services become profitable, as shown in Figure 3 (top center), where the power bought by the 

 
7 Real Italian market data (see GME (2022)) in 2018. 
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aggregator is partially in green (i.e., bought from ASM), and in Figure 3 (bottom center), where the 

average energy prices map into a point in the downward service area. Note that in this case also 

upward services are profitable (𝑔− > 0) but not as profitable as the downward ones. Finally, we raised 

the acceptance probability of upward services to 𝜋𝑘
− = 0.5 (and reduced 𝜋𝑘

+  to 0.5) to make upward 

services more profitable and we obtained the optimal aggregator power profile in Figure 3 (bottom 

right), where it can be seen that some time slots are blue (i.e., power bought from ASM). Accordingly, 

the average energy prices map into a point falling into the upward service case, see Figure 3 (top right). 

 

Figure 2. Day-ahead market, ancillary service market, and vehicle charging/discharging prices. 

 

 

Figure 3. Top: (𝒈𝟎
+, 𝒈−) plane. Black dots are obtained by considering day-averaged prices when computing 

𝒈𝟎
+ and 𝒈−. 
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3. Multi-objective optimization framework 
This section introduces the research effort conducted in task T4.3 by adding a further level of technical 

detail than what is foreseen in the Executive Summary. The activity ended up with a highly 

customizable multi-objective optimization algorithm and base EMS for EV charging scheduling. 

Numerical simulations show the versatility of the algorithm and emphasize the importance of the 

multi-objective approach. 

3.1. Modelling framework 

The Julia language8 has been chosen as the programming language for this project, as it provides high 

performance and offers multiple packages for mathematical optimization. Of the available modelling 

packages, JuMP9 (Lubin, et al., 2023) was selected for this project. With JuMP, the problem formulation 

is intuitive, and it supports multiple solvers; thus, the same model (with minimal modifications) can be 

used with different solvers. A Mixed-Integer Linear Program (MILP) formulation is used, which is solved 

by Gurobi10. The Multi Objective Algorithms (MOAs)11 package is used for lexicographic optimization. 

3.2. Mathematical formulation 

As the focus was to evaluate the multi-objective formulation, a relatively simple MILP formulation was 

developed for a public charging point scheduling problem based on (Mouli, Kefayati, Baldick, & Bauer, 

2019). 

3.2.1. Optimization variables 

For each variable, 𝑗 denotes the number of the EV, and 𝑡 denotes the timestep. All variables are equal 

to or greater than zero. 

𝑃𝐸𝑉+
𝑡,𝑗

 Charging power of the 𝑗-th EV at timestep 𝑡 [kW] 

𝑃𝐸𝑉−
𝑡,𝑗

 Discharging power of the 𝑗-th EV at timestep 𝑡 [kW] 

𝐸𝐸𝑉
𝑡,𝑗

 Battery energy of the 𝑗-th EV at timestep 𝑡 [kWh] 

𝐸𝑢𝑛𝑚𝑒𝑡
𝑗

 
Unmet energy demand of the 𝑗-th EV (difference between the requested and actual 
battery energy at departure) [kWh] 

𝑃𝑃𝑉
𝑡  Used solar power at timestep 𝑡 [kW] 

𝑎𝑔𝑟𝑖𝑑
𝑡  

Binary variable for grid power direction (0: power fed to the grid, 1: power drawn 
from the grid)  

 
8 https://julialang.org/  
9 https://jump.dev/JuMP.jl/stable/  
10 https://www.gurobi.com/  
11 https://github.com/jump-dev/MultiObjectiveAlgorithms.jl  

https://julialang.org/
https://jump.dev/JuMP.jl/stable/
https://www.gurobi.com/
https://github.com/jump-dev/MultiObjectiveAlgorithms.jl
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𝑃𝑔𝑟𝑖𝑑+
𝑡  Power fed to the grid at timestep 𝑡 [kW] 

𝑃𝑔𝑟𝑖𝑑−
𝑡  Power drawn from the grid at timestep 𝑡 [kW] 

𝑃𝑔𝑟𝑖𝑑𝑝𝑒𝑎𝑘 Peak power drawn during the optimization window [kW] 

𝑃𝑔𝑟𝑖𝑑𝑓𝑙𝑢𝑐 
Peak grid power fluctuation (maximum grid power change compared to the previous 
timestep) [kW] 

3.2.2. Constraints 

Both the charging and discharging power are limited by either the converter onboard the EV or the 

external charger. After the EV has connected to the charger, the limits can be compared, and the 

stricter limit is applied. 

 𝑃𝐸𝑉+
𝑡,𝑗

≤ 𝑃𝐸𝑉𝑚𝑎𝑥+
𝑗

, ∀𝑡, ∀𝑗, 3.1 

   
 𝑃𝐸𝑉−

𝑡,𝑗
≤ 𝑃𝐸𝑉𝑚𝑎𝑥−

𝑗
, ∀𝑡, ∀𝑗. 3.2 

   
The EV battery energy and the unmet energy demand cannot exceed the maximum battery capacity. 

 𝐸𝐸𝑉
𝑡,𝑗
≤ 𝐸𝐸𝑉𝑚𝑎𝑥

𝑗
, ∀𝑡, ∀𝑗. 3.3 

   
 𝐸𝑢𝑛𝑚𝑒𝑡

𝑗
≤ 𝐸𝐸𝑉𝑚𝑎𝑥

𝑗
,  ∀𝑗. 3.4 

   
The used solar power is also limited by the maximum power of the panel. 

 𝑃𝑃𝑉
𝑡 ≤ 𝑃𝑃𝑉𝑚𝑎𝑥,

𝑡 ∀𝑡. 3.5 

   
The battery energy at the start of the optimization is set based on the reported SoC and battery 

capacity of the EV. 𝑇𝑎
𝑗
 is the arrival timestep of the 𝑗-th EV. 

 
𝐸𝐸𝑉
𝑇𝑎
𝑗
,𝑗
= 𝐸𝐸𝑉𝑠𝑡𝑎𝑟𝑡

𝑗
,  ∀𝑗. 3.6 

   

At departure, the battery energy must be equal to the requested level from the EV user (𝐸𝐸𝑉𝑔𝑜𝑎𝑙
𝑗

). The 

𝐸𝑢𝑛𝑚𝑒𝑡 term is added to avoid infeasible solutions. This is especially important with multi-objective 

optimization towards the extreme points on the Pareto-front. 𝑇𝑑𝑒𝑝
𝑗

is the departure timestep of the 𝑗-

th EV. 

 
𝐸𝐸𝑉
𝑇𝑑𝑒𝑝
𝑗
,𝑗
+ 𝐸𝑢𝑛𝑚𝑒𝑡

𝑗
= 𝐸𝐸𝑉𝑔𝑜𝑎𝑙

𝑗
,  ∀𝑗. 3.7 

   
Before arrival and after departure, both the charging and discharging power are set to zero. In event-

based optimization, the EVs are only added to the optimization when they arrive. In this case, it is not 

necessary to add constraints for the timeframe before arrival. 

 𝑃𝐸𝑉+
𝑡,𝑗

= 0, ∀𝑡 ∉ [𝑇𝑎
𝑗
, 𝑇𝑑𝑒𝑝
𝑗
], ∀𝑗. 3.8 
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 𝑃𝐸𝑉−

𝑡,𝑗
= 0, ∀𝑡 ∉ [𝑇𝑎

𝑗
, 𝑇𝑑𝑒𝑝
𝑗
], ∀𝑗. 3.9 

   
The battery energy level for each EV for each timestep is calculated with eq. 3.10, where 𝑇𝑠𝑡𝑒𝑝 is the 

length of one timestep in minutes, and 𝜂𝑐ℎ
𝑗

 is the converter efficiency for EV 𝑗. The charging and 

discharging efficiency are considered to be the same. The inclusion of this efficiency term also ensures 

that 𝑃𝐸𝑉+
𝑡,𝑗

 and 𝑃𝐸𝑉−
𝑡,𝑗

 are not both nonzero at the same time, the addition of a binary variable is not 

necessary. 

 
𝐸𝐸𝑉
𝑡+1,𝑗

= 𝐸𝐸𝑉
𝑡,𝑗
+ 𝑃𝐸𝑉+

𝑡,𝑗 𝑇𝑠𝑡𝑒𝑝

60
 𝜂𝑐ℎ
𝑗
− 𝑃𝐸𝑉−

𝑡,𝑗
 
𝑇𝑠𝑡𝑒𝑝

60 ∙ 𝜂𝑐ℎ
𝑗
,  ∀𝑡 ∈ [𝑇𝑎

𝑗
, 𝑇𝑑𝑒𝑝
𝑗
− 1 ]. 3.10 

   
To avoid too low SoC levels, a minimum battery level is set while the EV is connected to the charger. 

 𝐸𝐸𝑉+
𝑡,𝑗

≥ 0.2𝐸𝐸𝑉𝑚𝑎𝑥
𝑗

, ∀𝑡 ∈ [𝑇𝑎
𝑗
, 𝑇𝑑𝑒𝑝
𝑗
], ∀𝑗. 3.11 

   
The sum of incoming and outgoing power at each timestep must be equal to each other. 

 
∑𝑃𝐸𝑉+

𝑡,𝑗
+

𝑁

𝑗=1

𝑃𝑔𝑟𝑖𝑑+
𝑡 = 𝑃𝑃𝑉

𝑡 + 𝑃𝑔𝑟𝑖𝑑−
𝑡 +∑𝑃𝐸𝑉−

𝑡,𝑗

𝑁

𝑗=1

∀𝑡, ∀𝑗 3.12 

   

𝑃𝑔𝑟𝑖𝑑+
𝑡  and 𝑃𝑔𝑟𝑖𝑑−

𝑡  cannot be nonzero at the same time. While with traditional cost-only based 

objectives, the difference between buying and selling price can ensure this condition, with multi-

objective optimization, the addition of a binary variable is necessary. 𝑃𝑔𝑟𝑖𝑑𝑚𝑎𝑥
𝑡  is the maximum allowed 

grid load at timestep 𝑡. 

 𝑃𝑔𝑟𝑖𝑑+
𝑡 ≤ (1 − 𝑎𝑔𝑟𝑖𝑑

𝑡 ) 𝑃𝑔𝑟𝑖𝑑𝑚𝑎𝑥
𝑡 , ∀𝑡, 3.13 

   
 𝑃𝑔𝑟𝑖𝑑−

𝑡 ≤ 𝑎𝑔𝑟𝑖𝑑
𝑡  𝑃𝑔𝑟𝑖𝑑𝑚𝑎𝑥

𝑡 , ∀𝑡. 3.14 

3.2.3. Objectives 

The objective formulations are recorded as expressions or variable-constraint combinations, and then 

the chosen one(s) are passed to the optimizer. This makes the algorithm highly customizable, as both 

the objectives and their orders can be easily modified with one parameter. 

Currently, four possible objectives are defined, but more could be added. Equation 3.15 shows the cost 

function, where 𝑁 is the number of connected EVs, T is the length of the optimization window, 𝑐𝑏𝑢𝑦
𝑡  

and 𝑐𝑠𝑒𝑙𝑙
𝑡  denotes the electricity buying and selling price, respectively, 𝑐𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is the penalty paid to 

the EV user for not satisfying the charging need and 𝑐𝑃𝑉 is the price for the solar power. The 𝑐𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

term ensures that the EVs are always charged to the requested level if it is feasible. Minimizing 𝐸𝑢𝑛𝑚𝑒𝑡
𝑗

 

could also be a separate objective. 

 
𝑚𝑖𝑛 ∑(𝑐𝑏𝑢𝑦

𝑡  𝑃𝑔𝑟𝑖𝑑−
𝑡 − 𝑐𝑠𝑒𝑙𝑙

𝑡  𝑃𝑔𝑟𝑖𝑑+
𝑡 ) +

𝑇

𝑡=1

∑𝑐𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝐸𝑢𝑛𝑚𝑒𝑡
𝑗

+∑𝑐𝑃𝑉  𝑃𝑃𝑉
𝑡 .

𝑇

𝑡=1

𝑁

𝑗=1

 3.15 
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Equations 3.16 - 3.19 together describe the objective of minimizing the peak grid load. Equations 3.20 

- 3.22 show the objective of minimizing the grid load fluctuations. 

 𝑃𝑔𝑟𝑖𝑑
𝑡 = 𝑃𝑔𝑟𝑖𝑑+

𝑡 + 𝑃𝑔𝑟𝑖𝑑−
𝑡 , ∀𝑡, 3.16 

   
 𝑃𝑔𝑟𝑖𝑑+

𝑡 ≤ 𝑃𝑔𝑟𝑖𝑑𝑝𝑒𝑎𝑘 , ∀𝑡, 3.17 

   
 𝑃𝑔𝑟𝑖𝑑−

𝑡 ≤ 𝑃𝑔𝑟𝑖𝑑𝑝𝑒𝑎𝑘 , ∀𝑡, 3.18 

   
 𝑚𝑖𝑛 𝑃𝑔𝑟𝑖𝑑𝑝𝑒𝑎𝑘 3.19 
   
 𝑃𝑔𝑟𝑖𝑑

𝑡 − 𝑃𝑔𝑟𝑖𝑑
𝑡+1 ≤ 𝑃𝑔𝑟𝑖𝑑𝑓𝑙𝑢𝑐 ∀𝑡 3.20 

   
 𝑃𝑔𝑟𝑖𝑑

𝑡 − 𝑃𝑔𝑟𝑖𝑑
𝑡+1 ≥ −𝑃𝑔𝑟𝑖𝑑𝑓𝑙𝑢𝑐 ∀𝑡 3.21 

   
 𝑚𝑖𝑛 𝑃𝑔𝑟𝑖𝑑𝑓𝑙𝑢𝑐 3.22 

V2G usage can increase the number of charging-discharging cycles an EV battery experiences, thus 

increasing the rate of battery degradation. Equations 3.23 and 3.24 try to reduce this effect by 

minimizing the discharged energy amount. A more detailed battery degradation model is planned to 

be added later. 

 
𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 =∑∑𝑃𝐸𝑉−

𝑡,𝑗 𝑇𝑠𝑡𝑒𝑝
60

𝑁

𝑗=1

𝑇

𝑡=1

 3.23 

   
 𝑚𝑖𝑛 𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 3.24 
   

If some of these objectives are not selected, the optimizer can choose a sufficiently high value for the 

corresponding optimization variables, thus effectively ignoring the objective.  

3.2.4. Multi-objective formulation 

For the multi-objective formulation, a mathematical programming approach, the augmented ε-

constraint was chosen. The implementation is based on an improved version of the method, 

AUGMECON2 (Mavrotas & Florios, An improved version of the augmented ε-constraint method 

(AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems, 

2013). 

The augmented ε-constraint method is based on scalarization: the original multi-objective formulation 

is converted into a single-objective problem. With ε-constraint, one objective is optimized while the 

others are fixed to given values in a restricted range specified by the pay-off table. The ranges and 

chosen density determine the number of sub-problems that need to be solved. AUGMECON2 improves 

the original algorithm in two ways (Mavrotas, Effective implementation of the ε-constraint method in 

Multi-Objective Mathematical Programming problems, 2009). 

• It guarantees the Pareto optimality of the obtained solution in the pay-off table as well as in 

the generation process. 
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• It improves the calculation speed by introducing an early exit condition. 

AUGMECON2 further enhances the speed by extracting information from the surplus variables in the 

formulation. It also makes it possible to produce the exact Pareto set in Multi-Objective Integer 

Programming (MOIP) problems (Mavrotas & Florios, An improved version of the augmented ε-

constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer 

programming problems, 2013). 

Equation 3.25 describes the general problem formulation; the notations are explained afterwards. 

 
𝑚𝑖𝑛 𝑓1(𝒙) + 𝜀 (

𝑆2
𝑟2
+ 10−1

𝑆3
𝑟3
+⋯+ 10−(𝑛−2)

𝑆𝑛
𝑟𝑛
) 3.25 

   
 𝑠. 𝑡. 𝑓𝑖(𝒙) − 𝑆𝑖 = 𝑒𝑖   ∀𝑖 ∈ [1, 𝑁]  
   
 

𝑒𝑖 = 𝑢𝑝𝑝𝑒𝑟𝑖 −
𝑖𝑡𝑒𝑟𝑖 𝑟𝑖
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖

  

   
𝑓𝑖 denotes the 𝑖-th objective, 𝑁 is the number of objectives. With AUGMECON2, the first step is to 

create the pay-off table whose size is 𝑁 × 𝑁. The pay-off table is filled with the objective values using 

the lexicographic method described in (Mavrotas, Effective implementation of the ε-constraint 

method in Multi-Objective Mathematical Programming problems, 2009). The minimum and maximum 

value for each objective determines the range of possible objective values, 𝑟𝑖. The maximum value 

determines the original upper bound, 𝑢𝑝𝑝𝑒𝑟𝑖, which is then reduced at each iteration with a step size 

of 
𝑟𝑖

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖
, where 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 is the number of intervals in the given range (determined by the user). 

With more intervals (and thus grid points), a denser representation of the Pareto-front can be reached, 

but the computational power need also increases. The total number of sub-problems (without early 

exit and skipping conditions) is ∏ (𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 + 1)
𝑁
𝑖=1 . Surplus variables (𝑆𝑖) are introduced to ensure 

Pareto-optimality, and they can also be used to speed up the computation by skipping over grid points, 

which would not produce a new solution. 𝜀 is usually set between 10−3and 10−6 (Mavrotas, Effective 

implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems, 

2009). 

In task T4.3, the above-described algorithm was implemented in a way which allows all parameters to 

be freely changed. This includes the number of objectives, objective order, and number of grid points 

for each objective. To step through all the grid points, 𝑁 − 1 nested loops are used in the original 

paper, where 𝑁 is fixed (hard-coded). To avoid this problem, a simulated nested loop structure was 

implemented, where a set of slots is maintained for each looping variable using an array. This way, we 

avoid using recursions, which could negatively impact the performance and memory usage, but still 

maintain the ability to change the number of objectives only by setting a parameter (without any 

change in the code). 

The AUGMECON2 formulation is only valid if there is a trade-off between the objectives. If there is no 

trade-off, the calculated range will be zero, and we run into a division by zero error. Some objectives 

might only conflict in certain situations (e.g., based on the electricity price, charging time, number of 

EVs, etc.). Thus, the algorithm was extended to automatically detect scenarios where no trade-off is 

present between objectives. In these cases, the objectives are removed, and their optimal values are 
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added as constraints (like lexicographic optimization). If only one objective remains, the algorithm 

switches to single-objective optimization.  

Currently, the output of the algorithm includes every found (feasible) solution and the corresponding 

charging schedules. To choose the most suitable solution, a higher-level Multi-Criteria Decision-Making 

(MCDM) algorithm will need to be developed. An iterative refinement possibility was added to help 

the manual selection process and for testing purposes. This means that a rough representation of the 

Pareto-front is first calculated, and then the decision-maker can indicate their preferred solution. 

Based on this information, the search space is confined, and the algorithm is run again. This iterative 

process continues until the decision-maker is satisfied with one of the proposed solutions. 

3.2.5. Future work 

In the future, the mathematical formulation will be extended to include limits for the Constant Current 

and Constant Voltage (CC-CV) regions during the battery charging process, as well as to allow the 

simulation of more general charging station setups (e.g., multiple levels of power limitations, the 

possibility of multiple EVs connecting to one charger). 

During Task 5.3, potential ancillary services provided by EVs will be investigated. The objectives will be 

modified, and new objectives will be added based on the results of this investigation. This is necessary 

to ensure the proper co-operation between the local EMS and grid-level optimization strategy as 

depicted in Figure 4. 

 

3.3. Energy Management System 

To evaluate the previously described optimization algorithm, a simple EMS was developed. The parking 

lot is assumed to have solar panels and multiple chargers installed. The nominal solar power and the 

grid limits are configurable. The overall time window and the length of the timesteps can also be 

modified. Two different scheduling algorithms were developed: event-triggered and day-ahead 

optimization. 

Figure 4. Connections between T4.3 and T5.3. 
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3.3.1. Event-triggered scheduling 

With event-triggered scheduling, we have no prior information about the EV arrival and departure 

times and energy demands. Departure times, current SoC and requested energy amounts are provided 

by the EV user after connecting to the charging station. Solar forecasts and energy prices are assumed 

to be available in advance. 

EVs can arrive at any point during the day and are added to the arriving EVs list. At the start of the next 

timestep, the EVs on the list are checked against the acceptance criteria to ensure that a feasible 

charging schedule can be found and that constraint 3.11 is satisfied. The maximum amount of energy 

that can be delivered to the given EV is calculated based on the EV departure time, converter efficiency, 

grid limits and aggregated charging schedule of the already connected and currently connecting EVs. 

If the requested energy exceeds the available capacity, the EV is rejected, and the user needs to modify 

the scheduled departure date and/or requested energy amount. If the EV is accepted, it is added to 

the connected EVs list, and the optimization is re-run. The optimization window is set based on the 

latest departure time. After departure, the EV is removed from the connected EVs list. 

Further events could be defined based on parameter changes (e.g., grid limits, forecasts, electricity 

prices), which trigger a re-optimization. 

3.3.2. Day-ahead scheduling 

Day-ahead scheduling assumes knowledge of EV-related data (arrival, departure times, SoC and energy 

demands) as well. This data could be provided by forecasting tools using datasets from Charging Point 

Operators (CPOs). The optimal schedule is calculated for a fixed time window. To combat the effects 

of uncertainties (forecasting errors), the optimization could be re-run periodically with updated 

parameters. A rolling-horizon implementation is described in (Mouli, Kefayati, Baldick, & Bauer, 2019). 

3.3.3. Future work 

As mentioned before, currently, no MCDM algorithm is available. Thus, either a fixed solution number 

is used, or the algorithm requires manual input for each iteration. The MCDM will be developed in Task 

5.3. This algorithm will be capable of using inputs from the grid-level optimization strategy as well as 

considering the local conditions. 

After the selection, the EMS updates the charging schedules for all connected EVs and resumes 

operation. At this time, ideal conditions are assumed, i.e., the charging process precisely follows the 

planned schedule. With future extensions, the grid conditions (e.g., voltage deviations) and forecast 

errors will also be considered. 

Some EV users might not want to participate in V2G (or smart charging in general), so the algorithm 

must differentiate between different types of schedules (uncontrolled, unidirectional, and 

bidirectional smart charging).  

3.4. Simulation results 

To evaluate the developed framework, multiple scenarios were investigated using numerical 

simulations. 
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3.4.1. Used datasets 

The used datasets include solar data from a reference 1 kWp panel, DAM electricity prices and EV-

related data. All these datasets are reused from a previous project, Orchestrating Smart Charging in 

mass Deployment (OSCD)  (Shekhar, Chandra Mouli, & Bauer, 2022), (Yu & al., 2022). Both the solar 

and price data have a 1-minute resolution for one year. The EV dataset was generated using recorded 

charging sessions and distribution functions from Elaad. It contains arrival and departure times, SoC 

(at arrival and at departure) and battery information (maximum capacity and power). The power limits 

(for charging and discharging) are assumed to be symmetrical. 

3.4.2. Scenario 1 

In scenario 1, a public charging point was considered, with 25 EVs arriving within 24 hours. Table 1 
summarizes the EV-related data. The optimization timestep (𝑻𝒔𝒕𝒆𝒑) was 10 minutes. Figure 5 shows 

the PV forecast for the connected 20 kWp panels. The DAM electricity prices are depicted in Figure 6. 

The selling price is assumed to be 90% of the buying price (𝒄𝒔𝒆𝒍𝒍 = 𝟎. 𝟗𝒄𝒃𝒖𝒚), 𝒄𝑷𝑽 = 0.01 €/kWh and the 

penalty term 𝒄𝒑𝒆𝒏𝒂𝒍𝒕𝒚 = 1€/kWh. The grid power limit (𝑷𝒈𝒓𝒊𝒅𝒎𝒂𝒙) was set to 100kW for each timestep. 

The EMS was operating in day-ahead mode. 

Table 1. EV data. 
EV 

number 
EV type 𝑻𝒂  𝑻𝒅𝒆𝒑  𝑬𝑬𝑽 at 

arrival 
𝑬𝑬𝑽𝒈𝒐𝒂𝒍 𝑬𝑬𝑽𝒎𝒂𝒙 𝑷𝑬𝑽𝒎𝒂𝒙 

 [hh:mm] [𝑘𝑊ℎ] [kW] 

1 Model S 06:45 09:35 67.62 72.22 72.5 16.56 

2 Model S 08:00 08:30 58.79 66.19 72.5 16.56 

3 Model 3 08:45 12:25 15.82 47.12 47.5 11.04 

4 Model X 08:45 14:55 62.38 72.38 72.5 16.56 

5 Model 3 10:00 03:50 38.46 47.36 47.5 11.04 

6 i3 10:30 02:15 30.73 37.83 37.9 11.04 

7 Model S 10:45 04:25 48.6 72.5 72.5 16.56 

8 Model S 10:45 17:00 55.2 72.4 72.5 16.56 

9 i3 11:15 23:45 32.57 37.77 37.9 11.04 

10 Model 3 11:15 05:05 43.8 47.5 47.5 11.04 

11 i3 11:15 13:55 34.22 37.72 37.9 11.04 

12 i3 11:30 02:35 33.67 37.77 37.9 11.04 

13 Model 3 11:45 22:30 43.24 47.34 47.5 11.04 

14 I-Pace 13:15 22:20 80.22 84.52 84.7 11.04 

15 I-Pace 14:00 23:40 77.46 84.56 84.7 11.04 

16 Model 3 14:15 18:20 38.82 47.32 47.5 11.04 

17 Model 3 14:30 17:35 40.3 47.4 47.5 11.04 

18 Model 3 17:30 19:25 41.4 47.4 47.5 11.04 

19 Model 3 18:00 18:50 41.58 46.68 47.5 11.04 

20 i3 18:15 20:30 31.65 37.85 37.9 11.04 

21 Model 3 18:30 20:15 40.66 47.36 47.5 11.04 

22 Model 3 18:45 00:20 37.54 47.34 47.5 11.04 

23 Kona 19:00 00:05 15.64 39.14 39.2 11.04 

24 i3 19:45 01:00 31.83 37.83 37.9 11.04 

25 Model  X 22:45 01:45 65.7 72.5 72.5 16.56 
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Figure 5. PV forecast. 

 

Figure 6. DAM electricity prices. 

 

Three objectives were selected for this scenario in the following order: minimize cost, minimize peak 

grid load, and minimize V2G usage. The objective value ranges for objectives 2 and 3 were divided into 

6 intervals, which means 7 × 7 = 49 maximum solutions on the Pareto-front. Figure 7 shows the 

calculated representation of the Pareto-front. Please note that the extreme point of 𝑃𝑔𝑟𝑖𝑑𝑝𝑒𝑎𝑘 = 0 is 

not shown, as even though it is a feasible solution, it is not realistic. 

Five different solutions were chosen to show the effect of the multi-objective optimization on the 

scheduling. Figure 8 shows the chosen points, and Table 2 gives the exact objective values. Point 1 and 

point 5 represent two extreme solutions for objectives 1 (lowest cost) and 3 (lowest V2G usage), 

respectively. There is only one extreme point for cost, as that is the main (first) objective, but there 

are multiple points with zero V2G usage. Solution 2 reduces the peak grid load with almost no change 

in V2G usage; solution 3 significantly reduces the V2G usage while keeping the peak grid load 
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unaffected. Solution 4 reduces both objective values, with a minimal increase in cost compared to 

solution 3. 

Table 2. Details of the chosen solutions for scenario 1. 

Solution number Cost [€] Peak grid load [kW] V2G usage [kWh] 
1 30.40 100.00 234.50 

2 31.15 66.67 223.46 

3 38.08 100.00 78.17 

4 38.32 50.00 78.17 

5 45.22 60.37 0.00 

 

The grid load profiles belonging to the different solutions are depicted in Figure 9. The effect of V2G 

usage reduction from solutions 3, 4 and 5 can be clearly seen at around noon. The evening grid load 

peak (around 21:00) is greatly reduced with solutions 2, 4 and 5.   

 

 

 Figure 8. Chosen solutions for scenario 1. 

Figure 7: Pareto-front for scenario 1, left: 2D representation, right: 3D representation. 
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Figure 10 shows the power and energy profiles of one EV: with solution 1 the battery is discharged 

when the electricity price is high and then charged back again in the evening; solution 3 reduces the 

amount of discharged energy, while solution 5 completely prevents V2G usage. It is important to note 

that the preferred solution is highly dependent on the specific use case requirements. Therefore, there 

are no general suggestions that can be made. 

 

Figure 9. Grid load profiles in scenario 1. 

 

Figure 10. Battery profiles for EV13 in scenario 1. 

 

3.4.3. Scenario 2 

In scenario 2, the list of objectives was extended with the minimization of grid load fluctuations. The 

objective value ranges for objectives 2, 3 and 4 were divided into 4 intervals, which means 5 × 5 × 5 =

125 maximum solutions on the Pareto-front. The other parameters and datasets remained unchanged. 

Figure 11 shows the resulting Pareto-front in the form of a ScatterPLOt Matrix (SPLOM). Part of the 

matrix (above the main diagonal) is omitted, as it doesn’t give new information. Using this matrix, the 
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relationship of any two objectives can be investigated, but the decision-making process for a human 

operator becomes increasingly difficult with more objectives.  

Three solutions were chosen to show the effect of the fourth added objective. The details are given in 

Table 3. Solution 1, which focuses on cost, is the same as in scenario 1 with the addition of the load 

fluctuation value. Solution 2 and 3 aims to reduce the fluctuation while keeping the other objective 

values like solution 4 in scenario 1. A trade-off between cost and V2G usage is explored: Solution 2 

provides a reduction in both the cost and the load fluctuation but increases the V2G usage. Solution 3 

reduces the V2G usage (and load fluctuation) but increases the charging cost. The peak grid load 

remains the same in both cases. The resulting grid load profiles are shown in Figure 12. 

Table 3. Chosen solutions for scenario 2. 

Solution number Cost 
[€] 

Peak grid load [kW] V2G usage [kWh] Load fluctuation 
[kW] 

1 30.40 100.00 234.50 66.88 

2 36.10 50.00 117.25 16.72 

3 39.79 50.00 58.62 16.72 

 

Figure 11. (Partial) SPLOM of the Pareto-front for scenario 2. 
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Figure 12. Grid load profiles in scenario 2. 

 

3.4.4. Remarks 

Both scenarios showcase the importance of multi-objective optimization to investigate the relationship 

of the objectives. A small change in one objective value might have a huge impact on the others (and 

thus on the overall schedule as well), but to take advantage of it, we need to first identify and quantify 

the potential trade-offs. The algorithm can also provide solutions to a wide array of situations without 

the need to add extra constraints. Modifying or adding objectives is a straightforward process, allowing 

great versatility.  
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4. Comparing Battery Degradation Techniques in EV 
Charging Optimization  

As highlighted in the Executive Summary, battery models are complex and their integration into EV 

charge optimization models is challenging. Additionally, there is a wide variety of battery technologies 

used in EVs, and obtaining degradation models is also difficult. All these factors, together present a 

substantial challenge for the Charger Station Operator (CSO). During task T4.3, various optimization 

models for smart charging were implemented and compared to assess the strengths and weaknesses 

of distinct approaches for incorporating battery degradation considerations into the optimization 

algorithm. The “Immediate Charging” (M0) model serves as the baseline case, representing the 

simplest charging approach. In this model, the EV charges at its maximum power capacity immediately 

after being plugged in until it reaches the predefined final SoC, without considering any price signals 

or degradation costs12. From each model, both energy costs and degradation costs are computed, and 

these costs are then aggregated to determine the Total Cost (TC) for each execution. 

4.1. Notation 

𝑁, 𝑇, 𝐽, 𝐾 
Set of charges, set of time steps, set of power piecewise degradation cost 
functions, and set of SoC piecewise degradation cost function 

Δ𝑡 , 𝛼, 𝛽  
Time interval period, SoC threshold where maximum EV charge power 
decreases, and maximum power reduction factor 

𝐵𝑐𝑡,𝑛, 𝐶𝑡
𝑝𝑐ℎ
, 

𝐶𝑡,𝑛
𝑏𝑎𝑡 , 𝐶𝑡

𝑢 

Battery nominal energy capacity, energy purchasing cost, battery acquisition 
cost, and energy purchase price 

𝐶𝑡,𝑛,𝑗
𝑃 , 𝐶𝑡,𝑛,𝑘

𝑆𝑜𝐶 , 

𝐸𝑓𝑓𝑛 

Power degradation cost per section, SoC degradation cost per section, and 
charger efficiency 

𝑚,𝑚𝑆𝑜𝐶 , 
𝑚𝑃 ,  

penalty cost to prioritize charges, penalty cost to delay chargers, and penalty 
cost to smooth chargers  

𝑃𝑡
𝐼𝑚𝑎𝑥 , 𝑃𝑛

𝑐ℎ𝑚𝑎𝑥  

𝑃𝑛
𝑐ℎ𝑚𝑖𝑛 , 𝑃𝑛,𝑗

𝑚𝑎𝑥 

Contracted power capacity, maximum power of charger n, minimum power of 
charger n, and power bounds for sections of power piecewise degradation 
function 

𝑆𝑜𝐶𝑡,𝑛
𝑖𝑛𝑖 , 𝑆𝑜𝐶𝑡,𝑛

𝑒𝑛𝑑 

𝑆𝑜𝐶𝑛
𝑖𝑛𝑖𝑇𝑊, 𝑆𝑜𝐶̅̅ ̅̅ ̅ 

𝑆𝑜𝐶, 𝑆𝑜𝐶𝑛,𝑘
𝑏𝑜𝑢𝑛𝑑  

SoC at the beginning of the charging session, SoC at the end of the charging 
session, SoC of the EV that is connected to charger n at the beginning of the 
time window optimization, maximum allowed SoC, minimum allowed SoC, and 
SoC bounds for each section 𝑘 of SoC piecewise function 

𝑆𝑜𝐻𝑡,𝑛, 𝑈𝑡,𝑛 Initial SoH and forecasted charging point occupancy profile 

 
12 Chargers employing this method commence charging at maximum power as soon as they are connected to a 
charger. Immediate charging does not consider external signals like energy prices or battery degradation. This 
model is straightforward and commonly used, making it a suitable baseline for comparison with other models. 
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𝑝𝑡
𝑝𝑐ℎ
, 𝑝𝑡,𝑛
𝐸𝑉 , 𝑆𝑜𝐶𝑡,𝑛 Power purchased from the grid, charging power to the EV, and state of charge 

𝑥𝑡,𝑛,𝑗
𝑝
, 𝑥𝑡,𝑛
𝑐ℎ , 𝑥𝑡,𝑛,𝑘

𝑆𝑜𝐶  
Binary to activate each power curve section (1 if the section is activated, 0 
otherwise), binary that is activated when the battery is being charged (1 if 

charging, 0 no charging), and 1 if 𝑆𝑜𝐶𝑛,𝑘
𝑚𝑖𝑑  bound is surpassed, 0 otherwise 

𝐶𝑓𝑐𝑎𝑙 , 𝐶𝑓𝑐𝑦𝑐 , 𝐶𝑓𝑡𝑜𝑡𝑎𝑙 
Capacity fade due to calendar ageing, capacity fade due to cycling ageing, and 
capacity fade due to calendar and cycling agening 

4.2. Battery Degradation Model 

The development of a battery degradation model plays a central role in the comparison, serving 

various purposes: (i) assessing degradation after each charge, (ii) integrating degradation into the 

optimization models, either directly or through linearization, and (iii) estimating battery life. 

Table 4. Battery degradation parameters obtained in references (Olmos, et al., 2021) and (Stroe, et al., 2015). 

Symbol Value for LFP Symbol Value for LFP 
𝑘𝑐𝑦𝑐 0.003414 𝑚𝑆𝑜𝐶𝑟𝑒𝑓 42% 

𝑘𝑇 5.8755 𝑇𝑒𝑚𝑝𝑟𝑒𝑓 293𝐾 

𝑘𝐷𝑂𝐷 0.0046 𝑎 0.869 

𝑘𝐶𝑐ℎ 0.1038 𝑘𝑐𝑎𝑙 0.1723 

𝑘𝐶𝑑𝑐ℎ 0.296 𝑘𝑆𝑜𝐶  0.007388 

𝑘𝑚𝑆𝑜𝐶 0.0513 𝑏 0.8 

 

Most EV batteries are Li-ion based, and although variations exist in formats and chemistry 

technologies, they share common stress factors affecting their lifespan. Battery degradation modelling 

is intricate, with various approaches available. For brevity, additional details are provided in the cited 

references (Wang, et al., 2020), (Chen, Liang, Yang, & Li, 2019), (Dubarry, Qin, & Brooker, 2018), (Ecker, 

Käbitz, Laresgoiti, & Sauer, 2015), (Ng, Xing, & Tsui, 2014), among others. Among these modelling 

approaches, the semi-empirical method was chosen due to its balance between computational 

efficiency, data requirements, model accuracy, and ease of linearization, making it suitable for 

inclusion in optimization models. Numerous open-source implementations and extensive knowledge 

are available in the literature, such as (Redondo-Iglesias, Venet, & Pelissier, 2019), (Petit, Prada, & 

Sauvant-Moynot, 2016), (Smith, et al., 2017), (Omar, et al., 2014). Semi-empirical models often 

differentiate between Cycle aging (sensitive to operating conditions) and Calendar aging (capacity loss 

over time). 

For the considered scenarios, a cycling model from (Olmos, et al., 2021) was selected, which includes 

data from various open-sources for Li-ion chemistries like Lithium Ferrum Phosphate (LFP), Nickel 

Manganese Cobalt (NMC), and Nickel Cobalt Aluminum (NCA), building general models for each 

chemistry. This model accounts for major stress factors, such as C-rate, temperature, DoD, and mean 

State Of Charge (mSoC). Model parameters vary based on the specific chemistry (Olmos, et al., 2021). 

The parameters for LFP cells are listed in Table 4. Therefore, we can write: 

 𝐶𝑓𝑐𝑦𝑐 = 𝛿𝑐𝑦𝑐   𝐹𝐸𝐶
𝑎 , 4.1 
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where 

 
𝛿𝑐𝑦𝑐   = 𝑘𝑐𝑦𝑐  𝑒

𝑘𝑇(
𝑇−𝑇𝑟𝑒𝑓
𝑇

) 
𝑒𝑘𝐷𝑜𝐷·𝐷𝑜𝐷   𝑒𝑘𝐶𝑐ℎ·𝐶𝑐ℎ   𝑒𝑘𝐶𝑑ℎ·𝐶𝑑ℎ (1

+ 𝑘𝑚𝑆𝑂𝐶 𝑚𝑆𝑜𝐶 (1 −
𝑚𝑆𝑜𝐶

2𝑚𝑆𝑜𝐶𝑟𝑒𝑓
)). 

 

4.2 

To address degradation during battery storage, a calendar model proposed by (Stroe, et al., 2015) for 

LFP cells is employed. This model considers the impact of current SoC and time on calendar aging in 

eq. 4.2. Hence, we can write: 

 𝐶𝑓𝑐𝑎𝑙 = 𝛿𝑐𝑎𝑙  𝑡
𝑏 , 4.3 

   
where 

 𝛿𝑐𝑎𝑙 = 𝑘𝑐𝑎𝑙 · 𝑒
𝑘𝑆𝑜𝐶 𝑆𝑜𝐶 . 4.4 

   
Combining both models, the total capacity fade experienced by the battery is calculated as: 

 𝐶𝑓𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑓𝑐𝑎𝑙 + 𝐶𝑓𝑐𝑦𝑐 . 4.5 

 

Both models are designed for constant stress factors. To use them with varying stress factors, the 

differential capacity fade for a period is computed for both cycling and calendar aging models (eqs 4.6 

and 4.7). Calculating Full Equivalent Cycles (FECs) and age at the start of each period “𝑖” is necessary. 

If FEC and battery age are unknown, they can be approximated using methods proposed in (Naumann, 

Spingler, & Jossen, 2020). These calculations allow determining the total capacity fade for each period 

“𝐼” and the corresponding State of Health (SoH) (eqs 4.8--4.12).  

 𝑑𝐶𝑓𝑐𝑦𝑐,𝑖 = 𝛿𝑐𝑦𝑐,𝑖  ((𝐹𝐸𝐶𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑖−1   + 𝐹𝐸𝐶𝑖)
𝑎
− (𝐹𝐸𝐶𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑖−1 )

𝑎
 ), 4.6 

 𝑑𝐶𝑓𝑐𝑎𝑙.𝑖 = 𝛿𝑐𝑎𝑙𝑖 ((𝑡𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑖−1 + 𝑡𝑖)
𝑏
− (𝑡𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑖−1)

𝑏
), 4.7 

 

𝐹𝐸𝐶𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑖−1 =  (
𝐶𝑓𝑡𝑜𝑡𝑎𝑙,𝑖−1
𝛿𝑐𝑦𝑐𝑖

)

1
𝑎

, 4.8 

 

𝑡𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑖−1 = (
𝐶𝑓𝑡𝑜𝑡𝑎𝑙,𝑖−1
𝛿𝑐𝑎𝑙𝑖

)

1
𝑏

, 4.9 

 𝐶𝑓𝑡𝑜𝑡𝑎𝑙,𝑖−1 = 100 − 𝑆𝑜𝐻𝑖−1, 4.10 

 𝑑𝐶𝑓𝑡𝑜𝑡𝑎𝑙,𝑖 = 𝑑𝐶𝑓𝑐𝑎𝑙,𝑖 + 𝐶𝑓𝑐𝑦𝑐,𝑖 , 4.11 

 𝑆𝑜𝐻𝑖 = 𝑆𝑜𝐻𝑖−1 − 𝑑𝐶𝑓𝑡𝑜𝑡𝑎𝑙,𝑖 . 4.12 

 

Additionally, the Rainflow Algorithm (Xu, Oudalov, Ulbig, Andersson, & Kirschen, 2018) is employed to 

obtain DoD and mSoC for each cycle of the profile under evaluation. The average values of other factors 

in each cycle are determined, considering non-zero C-rates. 

To convert capacity fade (𝑑𝐶𝑓𝑡𝑜𝑡𝑎𝑙,𝑖) into an economic indicator (𝐷𝑒𝑔𝑐𝑜𝑠𝑡𝑖), the battery acquisition cost 

(𝐶𝑏) and the battery nominal energy capacity (𝐵𝑐) serve as inputs. Throughout the study, it is assessed 
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the reduction in battery degradation in terms of its impact on battery acquisition cost. Extending 

battery life reduces the need for critical materials, recycling, and landfill, leading to cost savings and 

reduced greenhouse gas emissions. Equation 4.13 defines the economic cost of battery degradation in 

each period: 

 
𝐷𝑒𝑔𝑐𝑜𝑠𝑡𝑖 =

𝑑𝐶𝑓𝑡𝑜𝑡𝑎𝑙,𝑖
100 − 𝑆𝑜𝐻𝐸𝑂𝐿

𝐵𝑐 𝐶𝑏. 4.13 

 

4.3. Model 1 (M1): Smart charging  

The “Smart Charging” model considers energy prices and aims to optimize the charging process by 

minimizing the energy costs. By considering the fluctuating energy prices, the model strategically 

schedules the charging sessions to take advantage of lower electricity prices, thus reducing overall 

charging costs.  When multiple solutions are possible, it prioritizes the charge as soon as possible. 

Objective function. The objective function, shown in eq. 4.14, represents the overall cost of charging 

an EV. This includes the energy costs paid by the CSO associated with grid-supplied energy for all 

charging sessions throughout 24 hours (𝐶𝑡
𝑝𝑐ℎ
,) and any additional fees that users pay for the energy 

consumed during the charging procedure (𝐶𝑡
𝑢). 

 
∑∆𝑡  (𝐶𝑡

𝑝𝑐ℎ
 𝑝𝑡
𝑝𝑐ℎ

−∑ (𝐶𝑡
𝑢 𝑝𝑡,𝑛

𝐸𝑉 +𝑚 ⋅ (𝑆𝑜𝐶𝑡,𝑛
𝑒𝑛𝑑 − 𝑆𝑜𝐶𝑛,𝑡))

𝑛∈𝑁

  )

𝑡∈𝑇

. 4.14 

 

The expression m (𝑆𝑜𝐶𝑡,𝑛
𝑒𝑛𝑑 − 𝑆𝑜𝐶𝑛,𝑡) of the objective function represents a penalty, which aims to 

prioritize the charge as when multiple solutions give the same economic result. The value of m is set 

to be small enough so as not to influence the economic result. 

Charging station constraints. Constraint 4.15 assures that every kW supplied to the charger is 

consumed.  

 𝒑𝒕
𝒑𝒄𝒉

=∑𝒑𝒕,𝒏
𝑬𝑽

𝐧∈𝐍

,     ∀𝒕, 𝒏. 4.15 

 

Constraint 4.16 limits the power supplied by the distribution network, contingent upon the contracted 

power capacity (𝑃𝑡
𝐼𝑚𝑎𝑥) 

 𝒑𝒕
𝒑𝒄𝒉

≤ 𝑷𝒕
𝑰𝒎𝒂𝒙 ,       ∀𝒕, 𝑛. 4.16 

 

Charger constraints. The charging power can be adjusted within the domain [ 𝑃𝑛
𝑐ℎ𝑚𝑖𝑛 , 𝑃𝑛

𝑐ℎ𝑚𝑎𝑥] ∪ {𝟎}.  

Constraints 4.17 and 4.18 define the charger power bounds.  

 𝒑𝒕,𝒏
𝑬𝑽 ≤ 𝑼𝒕,𝒏 𝑷𝒏

𝒄𝒉𝒎𝒂𝒙  𝒙𝒕,𝒏
𝒄𝒉 ,          ∀𝒕, 𝑛, 4.17 

 

 𝒑𝒕,𝒏
𝑬𝑽 ≥ 𝑼𝒕,𝒏 𝑷𝒏

𝒄𝒉𝒎𝒊𝒏  𝒙𝒕,𝒏
𝒄𝒉 ,       ∀𝒕, n. 4.18 
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EV battery constraints. Constraint 4.19 guarantees the proper balance of the battery State of Charge. 

The actual capacity of the battery is considered using the State of Health (𝑆𝑜𝐻𝑡,𝑛) and the nominal 

battery capacity (𝐵𝑐𝑡,𝑛).  

 

𝑈𝑡,𝑛 𝑆𝑜𝐶𝑡,𝑛 =

{
 
 

 
 𝑈𝑡,𝑛 𝑆𝑜𝐶𝑛

𝑖𝑛𝑖𝑇𝑊 + 
∆𝑡

 𝑆𝑜𝐻𝑡,𝑛 ⋅ 𝐵𝑐𝑡,𝑛
 (𝐸𝑓𝑓𝑛 ⋅ 𝑝𝑡,𝑛

𝐸𝑉), 𝑖𝑓 𝑡 = 1, ∀𝑛,

𝑈𝑡,𝑛 𝑆𝑜𝐶𝑡−1,𝑛 + 
∆𝑡

 𝑆𝑜𝐻𝑡,𝑛 ⋅ 𝐵𝑐𝑡,𝑛
(𝐸𝑓𝑓𝑛  ⋅  𝑝𝑡,𝑛

𝐸𝑉), ∀𝑡 > 1, 𝑛.

 4.19 

 

The SoC of the battery must be maintained within an acceptable range. The upper bound is limited by 

constraint 4.20, and the lower bound is limited by constraint 4.21. In the final time interval during 

which the vehicle remains connected for charging (referred to as 𝑡⋆), the SoC must be equal to or 

greater than the minimum required value (𝑆𝑜𝐶𝑡,𝑛
𝑒𝑛𝑑). 

 𝑆𝑜𝐶𝑡,𝑛 ≤ 𝑈𝑡,𝑛 ⋅ 𝑆𝑜𝐶,        ∀𝑡, 𝑛, 4.20 

 

 
𝑆𝑜𝐶𝑡,𝑛 ≥ {

𝑈𝑡,𝑛 𝑆𝑜𝐶,         𝑖𝑓 𝑡 ≠ 𝑡
⋆,    ∀𝑛   

𝑆𝑜𝐶𝑡,𝑛
𝑒𝑛𝑑 ,       𝑖𝑓 𝑡 = 𝑡⋆,   ∀𝑛 

. 4.21 

 

The maximum charge power depends on the battery chemistry, battery temperature, and the SoC and 

is controlled internally by the Battery Management System (BMS) of each vehicle (Bandara, Viera, & 

González, 2022). To improve the simulation of vehicle charging, a variable maximum charging power 

is incorporated using constraint 4.22. Figure 13 shows the impact of constraint (20), wherein the 

maximum charging power linearly decreases from a specified threshold. 

 

𝑝𝑡,𝑛
𝑐ℎ ≤

{
 
 

 
 
𝑃𝑡,𝑛
𝑐ℎ𝑚𝑎𝑥

 
+
𝑃𝑡,𝑛
𝑐ℎ𝑚𝑖𝑛 −  𝑃𝑡,𝑛

𝑐ℎ𝑚𝑎𝑥

 

1 − 𝛼
(
𝑆𝑜𝐶𝑛,𝑡

𝐸𝑉 + 𝑆𝑜𝐶𝑛
𝑖𝑛𝑖𝑇𝑊

2
− 𝛼) , 𝑖𝑓 𝑡 = 1, ∀𝑛

𝑃𝑡,𝑛
𝑐ℎ𝑚𝑎𝑥

 
+
𝑃𝑡,𝑛
𝑐ℎ𝑚𝑖𝑛 −  𝑃𝑡,𝑛

𝑐ℎ𝑚𝑎𝑥

 

1 − 𝛼
(
𝑆𝑜𝐶𝑛,𝑡

𝐸𝑉 + 𝑆𝑜𝐶𝑛,𝑡−1
𝐸𝑉

2
− 𝛼) , ∀𝑡 > 1, 𝑛 

 4.22 
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Figure 13. Feasible region for charging process. 

 

Finally, Model 1 (M1) consists of the following optimization model: 

         min  (4.14) 
𝑠. 𝑡. ( 4.15), (4.16), (4.17), (4.18), (4.19), (4.20), (4.21), (4.22) 

4.23 

 

4.4. Model 2 (M2): Good Practices for Battery Care 

In situations where specific data or battery models are unavailable, it remains possible to mitigate 

battery degradation while keeping energy costs in check by adhering to optimal battery maintenance 

practices. These practices encompass tactics like delaying the charging process to prevent reaching a 

high SoC or reducing charging power. Model 2 represents an improvement over Model 1, as it not only 

considers energy pricing but also schedules charging during time periods with consistent energy costs. 

Our focus has been on prioritizing the following strategies. 

M2.1 Smart Delayed Charging. In this variant, the cost parameter (𝑚𝑆𝑜𝐶) is associated with high SoC 

values, prompting the model to delay full charging until the end of the period while maintaining 

constant costs. 

 
min∑∆𝑡 (𝐶𝑡

𝑝𝑐ℎ
 𝑝𝑡
𝑝𝑐ℎ

− 𝐶𝑡
𝑢∑𝑝𝑡,𝑛

𝐸𝑉

𝑛∈𝑁

 + 𝑚𝑆𝑂𝐶  ∑ 𝑆𝑜𝐶𝑛,𝑡
𝑛∈𝑁

 )

  𝑡∈𝑇

 

𝑠. 𝑡. ( 4.15), (4.16), (4.17), (4.18), (4.19), (4.20), (4.21), (4.22) 
 

4.24 

M2.2 Smart charge with C-rate Reduction. In this variant, the cost parameter (𝑚) is linked to the 

square of power, compelling the model to distribute the charging load uniformly across periods with 

identical costs. The squared power term penalizes charging at higher power levels, promoting even 

power distribution. The model problem can be represented as follows: 
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𝑚𝑖𝑛 ∑∆𝑡 (𝐶𝑡

𝑝𝑐ℎ
 𝑝𝑡
𝑝𝑐ℎ

− 𝐶𝑡
𝑢∑𝑝𝑡,𝑛

𝐸𝑉

𝑛∈𝑁

 + 𝑚𝑃  ∑(𝑝𝑡,𝑛
𝐸𝑉

𝑛∈𝑁

)2 )  

𝑡∈𝑇

 

𝑠. 𝑡. ( 4.15), (4.16), (4.17), (4.18), (4.19), (4.20), (4.21), (4.22) 
 

4.25 

We determined the selection of the 𝑚𝑃 choice through a sensitivity analysis. This analysis revealed 

that using a value for “𝑚” one order of magnitude lower than the smallest observed price differential 

achieves the objective of minimizing cost while charging at the lowest power level. 

4.5. Model 3 (M3): Two-step c-rate iteration 

This model signifies an enhancement over M1, specifically designed to account for the potential impact 

of charging on battery longevity. It achieves this through an iterative process involving M1 and the 

battery lifetime model. In each iteration, the power capacity is decreased, and a solution that 

minimizes the total cost (comprising energy cost and battery degradation cost) is pursued. 

The initial step, depicted in Figure 14(A), involves executing the M1 model. Once M1 has computed 

the optimal charging power profile, the battery lifetime model is employed to assess the equivalent 

battery degradation cost of that solution (𝐶𝑓𝑡𝑜𝑡𝑎𝑙
𝑖 ). 

For the subsequent iteration, as illustrated in Figure 14(B), the maximum charge power (𝑃𝑡,𝑛
𝐸𝑉𝑚𝑎𝑥) is 

reduced by 𝛽-percent (indicated by the dashed red line) in the time intervals (highlighted by the blue 

arrows) where the previous result exhibited the highest charge power. A potential new optimal 

charging profile, based on the updated maximum charge power, is presented in Figure 14(C). Once 

more, the blue arrows in Figure 14(C) indicate the new time intervals where the 𝛽-reduction should 

be applied. 

 

Figure 14. Example of the power constraint reduction method implemented in Model 3. 

 

The algorithm concludes its operation when one of the following conditions is met: (i) it reaches a 

maximum number of iterations; (ii) it becomes impossible to attain the desired SoC with the new 

maximum charge power. During each iteration, the total cost (𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑖) is computed using eq. 4.26. 

In this equation, 𝐶𝑓𝑡𝑜𝑡𝑎𝑙
𝑖  represents the degradation cost obtained from the battery lifetime model at 

iteration 𝑖, 𝐶𝑒𝑛𝑒𝑟𝑔𝑦
𝑖  signifies the cost of the energy purchased, and 𝐼𝑢𝑠𝑒𝑟

𝑖  stands for the income linked 
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to user tariff prices. The result provides the total cost from the perspective of the charge station 

operator. 

 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑖 = 𝐶𝑓𝑡𝑜𝑡𝑎𝑙
𝑖 + 𝐶𝑒𝑛𝑒𝑟𝑔𝑦

𝑖 − 𝐼𝑢𝑠𝑒𝑟
𝑖 . 4.26 

   
The solution yielded by Model 3's algorithm is the optimal power profile obtained from the 𝑖-th 

iteration that achieves the minimum 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡. 

4.6. Model 4 (M4): C-rate costs 

In contrast to M3, this model eliminates the need for an iterative process between the degradation 

model and the smart charging problem. Instead, M3 incorporates a piece-wise linear degradation cost 

function into the optimization formulation. This function considers the charging power profile and 

allows for a more efficient optimization while considering the impact of the C-rate on battery 

degradation. 

The rate at which a battery is charged, referred to as the C-rate, has a role in its degradation. To 

incorporate this concept into an optimization model, the objective function of M1 is expanded to 

encompass degradation costs related to a discretized C-rate parameter in 𝐽 values. This enhancement 

enables the optimization process to consider the influence of varying C-rates on battery health. 

The C-rate degradation costs are calculated using the methodology a piecewise linearization method. 

Based on the conditions of the charging session, the appropriate table of degradation values is selected 

and remains constant throughout the entire charging session. 

To match the C-rate costs with the charging power variables, the C-rates are translated to power with 

the C-rate definition: 𝑃𝑜𝑤𝑒𝑟 =  𝐶 − 𝑟𝑎𝑡𝑒 𝐵𝑐. Finally, 𝑝𝑡,𝑛
𝐸𝑉 will be associated with 𝐶𝑗

𝑃 if 𝑝𝑡,𝑛
𝐸𝑉 ∈

(𝑃𝑡,𝑛,𝑗−1
𝑚𝑎𝑥 , 𝑃𝑡,𝑛,𝑗

𝑚𝑎𝑥].  

Objective function. Compared with the objective function presented in eq. 4.14, a term has been 

included to introduce a cost according to the power delivered by charger n for each time step t, 

𝐶𝑡,𝑛,𝑗
𝑃 𝑥𝑡,𝑛,𝑗

𝑃 . Where  𝑥𝑡,𝑛,𝑗
𝑃  is a binary variable used to determine in which power region 𝑝𝑡,𝑛

𝐸𝑉 is contained. 

 

∑∆𝑡 (𝐶𝑡
𝑝𝑐ℎ
 𝑝𝑡
𝑝𝑐ℎ

−∑(𝐶𝑡
𝑢 𝑝𝑡,𝑛

𝐸𝑉 − ∑𝐶𝑡,𝑛,𝑗
𝑃 𝑥𝑡,𝑛,𝑗

𝑃  

𝑗∈𝐽 

)

𝑛∈𝑁

).   

𝑡∈𝑇

 

 

4.27 

   

Charger constraints. The following set of constraints determines the 𝑥𝑡,𝑛,𝑗
𝑃  variable. This variable 

indicates the cost region according to the charging power variable. It is assumed that for each C-rate 

cost table, the first row (𝑗 =  1) corresponds to the cost of no charging, and it is assumed to set 𝐶𝑡,𝑛,1
𝑃 =

0. 

 𝑝𝑡,𝑛
𝐸𝑉 > 𝑥𝑡,𝑛,𝑗

𝑃  𝑈𝑡,𝑛 𝑃𝑛𝑗−1
𝑚𝑎𝑥 , ∀𝑡, 𝑛, 𝑎𝑛𝑑 ∀𝑗 > 1, 4.28 

   
 𝑝𝑡,𝑛

𝐸𝑉 ≤ 𝑈𝑡,𝑛 𝑃𝑛𝑗
𝑚𝑎𝑥 𝑥𝑡,𝑛,𝑗

𝑃 , ∀𝑡, 𝑛, 𝑗, 4.29 
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 𝑝𝑡,𝑛
𝐸𝑉 ≤∑𝑥𝑡,𝑛,𝑗

𝑃  𝑃𝑛𝑗
𝑚𝑎𝑥

𝑘

, ∀𝑡, 𝑛, 𝑗, 4.30 

   
 ∑𝑥𝑡,𝑛,𝑗

𝑃

𝑗

≤ 1, ∀𝑡, 𝑛, 𝑗, 4.31 

   
EV Battery constraints. Finally, the Model 4 (M4): C-rate consists of the following optimization model: 

         min  (4.27) 
𝑠. 𝑡. ( 4.15), (4.16), (4.17), (4.18), (4.19), (4.20), (4.21), (4.22), 

(4.28), (4.29), (4.30), (4.31) 
4.32 

 

4.7. Model 5 (M5): C-rate and SOC costs 

M5 aims to incorporate another factor directly affecting battery lifetime reduction: the SOC.  This 

model builds upon Model 4 by considering the influences of both the C-rate and SoC. Like the inclusion 

of the C-rate cost in the model M4, M5 takes into consideration the SoC cost.  The SoC degradation 

costs (𝐶𝑛,𝑘
𝑆𝑜𝐶) are computed using the piecewise linearization methodology.  

Objective function. In this occasion, an additional term has been added to consider the impact coming 

from degradation costs related to SoC: 𝐶𝑡,𝑛,𝑘
𝑆𝑜𝐶 ∙ 𝑥𝑡,𝑛,𝑘

𝑆𝑜𝐶 . 𝐶𝑡,𝑛,𝑘
𝑆𝑜𝐶  represents the cost associated with having 

the EV plugged in at charger 𝑛 at time 𝑡, where the variable 𝑆𝑜𝐶𝑡,𝑛 belongs to the interval 

(𝑆𝑜𝐶𝑘−1
𝑚𝑖𝑑, 𝑆𝑜𝐶𝑘

𝑚𝑖𝑑]. 

 

∑∆𝑡 (𝐶𝑡
𝑝𝑐ℎ

⋅ 𝑝𝑡
𝑝𝑐ℎ

−∑(𝐶𝑡
𝑢 𝑝𝑡,𝑛

𝐸𝑉 −∑𝐶𝑡,𝑛,𝑗
𝑃 𝑥𝑡,𝑛,𝑗

𝑃 −

𝑗∈𝐽

 ∑ 𝐶𝑡,𝑛,𝑘
𝑆𝑜𝐶 ∙ 𝑥𝑡,𝑛,𝑘

𝑆𝑜𝐶

𝑘∈𝐾

)

𝑛∈𝑁

).  

𝑡∈𝑇

 4.33 

   
EV battery constraints. It is necessary to determine which values from the SoC degradation table, 

𝐶𝑡,𝑛,𝑘
𝑆𝑜𝐶 , should be activated, 𝑥𝑡,𝑛,𝑘

𝑆𝑜𝐶 , according to the SoC variable, 𝑆𝑜𝐶𝑛,𝑡. To do so, three different 

constraints are considered. 

 𝑆𝑜𝐶𝑛,𝑡 > 𝑥𝑡,𝑛,𝑘
𝑆𝑜𝐶  𝑆𝑜𝐶𝑛,𝑘−1

𝑏𝑜𝑢𝑛𝑑 , ∀𝑡, 𝑛, 𝑎𝑛𝑑 ∀𝑘 > 1, 4.34 

   
 ∑𝑥𝑡,𝑛,𝑘

𝑆𝑜𝐶

𝑘

≤    1, ∀𝑡, 𝑛, 𝑘, 4.35 

   
 𝑆𝑜𝐶𝑛,𝑡 ≤∑𝑥𝑡,𝑛,𝑘

𝑆𝑜𝐶  𝑆𝑜𝐶𝑛,𝑘
𝑏𝑜𝑢𝑛𝑑

𝑘

, ∀𝑡, 𝑛, 𝑘, 4.36 

   
Finally, the Model 5 (M5): optimization problem is represented by: 

         min  (4.27) 
𝑠. 𝑡. ( 4.15), (4.16), (4.17), (4.18), (4.19), (4.20), (4.21), (4.22), 

(4.28), (4.29), (4.30), (4.31), (4.34), (4.35), (4.36) 
 

4.37 
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4.8. Case Study 

A comprehensive case study was developed to encompass various relevant conditions that a vehicle 

might encounter. Since the optimal solutions of the models outlined in early sections depend on the 

dataset and conditions used for their execution, the case study aims to shed light on how these 

parameters influence the decision-making process of each model. Table 5 compiles the results of 384 

scenarios executed for each individual model (Immediate Charging, M1, M2, M3, M4, and M5). 

Table 5. Summary of the parameter values for the different scenarios executed. 

Location (time) Power 
Capacity (kW) 

Initial SoC (%) EV SoH (%) Electricity Tariff 

Office (8-15:30) 11, 22, 50, 100 25, 45, 60 85, 90, 95, 100 DP/TT 

Lunch (13:30-15:30) 11, 22, 50, 100 25, 45, 60 85, 90, 95, 100 DP/TT 

Shopping (16-20) 11, 22, 50, 100 25, 45, 60 85, 90, 95, 100 DP/TT 

Home (20-7:30) 11, 22, 50, 100 25, 45, 60 85, 90, 95, 100 DP/TT 

 

The parameters explored across different scenarios include: 

• Energy price signal: The optimal solution of the models is affected by the balance between the 

economic benefit of shifting the charge to cheaper periods and the potential increase in 

degradation costs. Therefore, as illustrated in Figure 15, this study compares the following two 

energy price structures during a weekday: 

o Time of Use Tariff (TT): A commercial tariff (6.1 TDVE) with different prices (P3, P4, 

P6) within a weekday in June 2023. (“Tarifa Períodes,” 2023) 

o Dynamic Prices (DP): A tariff with an hourly price signal: Spanish regulated energy 

price as of April 28th, 2023 (“ESIOS electricidad,” 2023). 

• Location and parking time: Charger usage times have been adapted based on four locations: 

Office, Lunch, Shopping, and Home. The time scheduling of each location is represented by the 

colored boxes in Figure 15. 

• Initial and final SoC: To ensure a consistent and standardized comparison across all scenarios 

and models, a uniform energy requirement of 20kWh for all charging sessions was established. 

Consequently, the final SoC values for each scenario based on this energy requirement were 

calculated along with the three different initial SoC values, defined as 25%, 45%, and 60%. 

• EV battery SoH: Given the exponential nature of the selected battery model, battery 

degradation is more pronounced when the battery has a higher SoH. Therefore, the case study 

includes different SoH levels to facilitate comparison. 

• Maximum charger power (Maximum C-rate): Four common values for charger capacities (11, 

22, 50, 100kW) were considered, resulting in C-rate values of 0.22C, 0.44C, 1C, and 2C, 

respectively. While it is currently uncommon for home chargers to have 50 or 100kW 

capacities, these scenarios were included in the test matrix for completeness. 
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Figure 15. Energy prices signals combined with the Location and Parking Time. 

 

The results were acquired using a computer with an Intel© Core™ i7-7800X CPU and 32GB of RAM. 

Furthermore, the various optimization models were implemented and solved using the Pyomo 

Python13 package and the open-source solver SCIP14. 

The simulations show that scenarios characterized by longer parking durations, higher SoH, higher 

charger powers, and stable price signals (TT tariffs) show a greater potential for improving TC 

Reduction compared to Model 1 (M1). These findings underscore the importance of prioritizing the 

implementation of optimization models that account for battery degradation when managing a 

Charging Station. However, it is worth noting that in some scenarios, certain proposed models may 

increase energy costs while reducing battery degradation costs. This highlights the delicate balance 

between the interests of the CSO in lowering their costs and the interests of vehicle owners in 

minimizing their total costs, which include both energy costs and battery degradation costs.  

Table 6 summarizes various indicators for each model, revealing that the implementation of smart 

charging, with or without considering degradation costs, has the potential to significantly reduce total 

costs compared to “Immediate Charging”, with reductions ranging from 13.4% to 14.6%. Additionally, 

the incorporation of degradation models for managing unidirectional charging (V1G) can further 

reduce costs, with reductions ranging from 0.88% to 1.39% compared to M1. 

Concerning execution time, most models exhibited efficient execution times, except for M3 and M5. 

M3, due to its iterative nature, demonstrated low variability in execution time, with a standard 

deviation of 19.68 seconds. In contrast, M5 exhibited longer and more variable execution times, with 

an average execution time higher than M3 and a standard deviation of 394.95 seconds. This suggests 

that the execution time of M5 is significantly influenced by the specific scenario, while M3's execution 

 
13 https://www.pyomo.org/  
14 https://www.scipopt.org/  

https://www.pyomo.org/
https://www.scipopt.org/
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time remains relatively consistent across scenarios. The extended duration for M5 is primarily 

attributed to specific “Home” scenarios. In two instances, namely (charger power: 50kW, SoH: 95%, 

initial SoC: 60%) and (charger power: 100kW, SoH: 90%, initial SoC: 25%), the solver reached the one-

hour execution time limit without achieving an optimal solution, resulting in an optimality gap of 0.09% 

and 0.15%, respectively. 

Table 6. Comparison of the different models with the indicators obtained throughout the results. Colors 
reflect the locations (i.e., “Office”, “Mail”, “Lunch, and “Home”) as depicted in Figure 15. Red, orange and 
green colors are also intentionally used to refer to the quality of the obtained results. 

 Im. 
Charg. 
(M0) 

Smart 
Charg. 
(M1) 

Delayed 
Sm. Mod. 

(M2.1) 

C-rate 
reduc. 
(M2.2) 

Two-
steps 
(M3) 

C-rate 
(M4) 

C-rate 
& SoC 
(M5) 

Avg. Total 
Cost 

5.67 € 4.87 € 4.79 € 4.81 € 4.78 € 4.81 € 4.78 € 

Avg. Cost 
reduction vs. 

Im. Charg. 
- 13.38% 14.47% 14.27% 14.61% 14.16% 14.54% 

Avg. Cost  
reduction vs. 

M1 
- - 1.22% 1.00% 1.39% 0.88% 1.31% 

Avg. 
execution 
Time (sec) 

- 0.146s 0.205s 0.737s 43.3s 0.972s 91.3s 

Degradation 
Data 

required 

No data 
required 

No data 
required 

General 
battery 

care 

General 
battery 

care 

Full 
model 

One 
table 

Two 
tables 

 

Each of the methods explored in this study requires distinct sets of data. Some of this data pertains to 

user preferences, such as preferred departure time or desired SoC, which are essential for enabling 

smart charging. To incorporate degradation considerations, a model of the vehicle battery system is 

necessary, either in its full form (as in M3) or in its linearized form (M4 and M5). 

4.9. Summary of battery degradation assessment 

In this study, it has been examined the potential of integrating battery degradation considerations into 

EV smart charging algorithms, discovering that it offers cost reduction and battery lifespan extension 

benefits even in unidirectional charging scenarios. It has been established baseline models 

(“Immediate Charging” and M1) and developed variations, some implicitly considering degradation 

(M2) and others explicitly incorporating it (M3, M4, and M5). Analyzing these models revealed 

substantial Total Cost Reduction (TCR) potential, especially when compared to “Immediate Charging” 

(“Immediate Charging”). Transitioning from M0 to optimal models resulted in a TCR of 13.4% to 14.6%, 

while the proposed models achieved a TCR of 0.88% to 1.39% compared to M1. 

CSOs often overlook degradation impacts, focusing on cost reduction and customer experience. In 

contrast, customers seek to lower ownership costs and extend battery life. This distinction could lead 

to a “Smart and Healthy” battery charging business model for operators. Sensitivity analysis 

highlighted the importance of the SoC stress factor, with SoC-based models (M2, M3, and M5) 
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outperforming C-rate-based ones (M2 and M4). However, SoC-based models require more data and 

time. Higher degradation rates and stable electricity tariffs, such as Time of Use (ToU), enhance cost 

reduction potential. Higher charger power capacities lead to greater reductions. 

The work carried within task T4.3 identifies method benefits and challenges, with M3 often performing 

well but not guaranteed to be the lowest cost option due to its heuristic nature. M5 can over- or 

underestimate degradation cost due to linearization. Yet, both models extract additional value 

compared to basic smart charging. Future work includes exploring motivations of vehicle owners and 

station operators, conducting simulations in larger charging stations, and extending models to 

bidirectional charging scenarios.  
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5. Conclusions 
In conclusion, deliverable D4.3 provided a comprehensive overview of the research efforts and findings 

from months M4 to M18 within task T4.3 of the FLOW project. The primary focus of this task was to 

design advanced smart charging solutions to facilitate the integration of EVs into electric power 

systems.  

As highlighted in the analysis presented, deliverable D4.3 underscores the critical significance of 

Vehicle-To-Everything technology and sheds light on the complexities inherent in Energy Management 

Systems. These foundational concepts serve as springboard for delving into advanced EMS capabilities. 

This prompted further research into quantifying the economic benefits of Vehicle-to-Grid energy 

management frameworks. Through a rigorous analysis based on previous work by project partners, we 

successfully quantified the economic advantages associated with providing ancillary services to the 

grid. Our analysis has also established necessary and sufficient conditions for profitability, illustrated 

through numerical simulations using MATLAB. 

Additionally, deliverable D4.3 encompasses the development of a highly flexible multi-objective 

optimization algorithm and a foundational EMS for scheduling EV charging. Leveraging Mixed-Integer 

Linear Program formulations, these innovations offer adaptability and scalability for broad 

deployment. Numerical simulations using JuMP and Gurobi as the solver have convincingly 

demonstrated the effectiveness of the multi-objective approach. 

Finally, deliverable D4.3 investigated the intricate challenges associated with integrating battery 

models into EV charge optimization systems. These complexities stem from the wide array of battery 

technologies utilized in EVs and task of acquiring degradation models. The performed investigation 

centered on the evaluation of various optimization models tailored for smart charging, with a specific 

emphasis on the inclusion of battery degradation considerations. The ultimate findings underscore the 

essential need for comprehensive optimization models to improve charging practices by considering 

the significance of the SoC stress factor. 

The findings and advancements unveiled in deliverable D4.3 lay a robust foundation for ongoing efforts 

to enhance EMS capabilities, accommodate uncertainties, explore battery degradation models, and 

address multi-criteria optimization challenges. As EVs continue to assume a more significant role in the 

energy landscape, these contributions are poised to drive the realization of a sustainable and 

dependable electric mobility ecosystem, closely aligning with the objectives of the FLOW project.  
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